Sudden unexpected deaths often remain unresolved despite forensic examination, posing challenges for pathologists. Molecular autopsy, through genetic testing, can reveal hidden causes undetectable by standard methods. This review assesses the role of molecular autopsy in clarifying SUD cases, examining its methodology, utility, and effectiveness in autopsy practice. This systematic review followed PRISMA guidelines and was registered with PROSPERO (registration number: CRD42024499832). Searches on PubMed, Scopus, and Web of Science identified English studies (2018-2023) on molecular autopsy in sudden death cases. Data from selected studies were recorded and filtered based on inclusion/exclusion criteria. Descriptive statistics analyzed the study scope, tissue usage, publication countries, and journals. A total of 1759 publications from the past 5 years were found, with 30 duplicates excluded. After detailed consideration, 1645 publications were also excluded, leaving 84 full-text articles for selection. Out of these, 37 full-text articles were chosen for analysis. Different study types were analyzed. Mutations were identified in 17 studies, totaling 47 mutations. Molecular investigations are essential when standard exams fall short in determining sudden death causes. Expertise in molecular biology is crucial due to diverse genetic conditions. Discrepancies in post-mortem protocols affect the validity of results, making standardization necessary. Multidisciplinary approaches and the analysis of different tissue types are vital.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11171636 | PMC |
http://dx.doi.org/10.3390/diagnostics14111151 | DOI Listing |
Alzheimers Dement
December 2024
Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
Introduction: Alzheimer's disease (AD), primary age-related tauopathy (PART), and chronic traumatic encephalopathy (CTE) all feature hyperphosphorylated tau (p-tau)-immunoreactive neurofibrillary degeneration, but differ in neuroanatomical distribution and progression of neurofibrillary degeneration and amyloid beta (Aβ) deposition.
Methods: We used Nanostring GeoMx Digital Spatial Profiling to compare the expression of 70 proteins in neurofibrillary tangle (NFT)-bearing and non-NFT-bearing neurons in hippocampal CA1, CA2, and CA4 subregions and entorhinal cortex of cases with autopsy-confirmed AD (n = 8), PART (n = 7), and CTE (n = 5).
Results: There were numerous subregion-specific differences related to Aβ processing, autophagy/proteostasis, inflammation, gliosis, oxidative stress, neuronal/synaptic integrity, and p-tau epitopes among these different disorders.
Pediatr Dev Pathol
December 2024
Department of Human Genetics, National Institute of Pediatrics, Mexico City, Mexico.
Neuronal ceroid lipofuscinosis type 2 (CLN2) results from biallelic pathogenic variants in the gene, leading to deficient activity of the lysosomal enzyme tripeptidyl peptidase 1. We report an autopsy case of CLN2 characterized at molecular level. The patient exhibited a spectrum of neurologic symptoms including epilepsy, behavioral alterations, cognitive regression, motor impairment, and visual loss.
View Article and Find Full Text PDFEur J Prev Cardiol
December 2024
Cardiovascular and Genomics Institute, City St George's University of London, Cranmer Terrace, London SW17 0RE, UK.
Aims: Sudden arrhythmic death syndrome (SADS) refers to a sudden death, which remains unexplained despite comprehensive post-mortem examination and a toxicological screen. We aimed to investigate the impact of age and sex on the overall diagnostic yield and underlying aetiology in decedents with SADS using a combined approach of familial evaluation (FE) and molecular autopsy (MA).
Methods And Results: Consecutive referrals to a single centre for FE only, MA only or both, following a SADS death were included.
JACC Clin Electrophysiol
December 2024
Office of the Chief Medical Examiner, City and County of San Francisco, San Francisco, California, USA.
Background: Sudden cardiac death (SCD) genetic studies neglect the majority occurring in older decedents with cardiovascular pathology.
Objectives: This study sought to determine the burden of genetic disease in unselected adult sudden deaths by precision genotype-postmortem phenotype correlation.
Methods: The authors used autopsy, histology, and toxicology to adjudicate cause and identify high-suspicion phenotypes (eg, hypertrophic cardiomyopathy) among presumed SCDs aged 18 to 90 years referred to the county medical examiner from February 2011 to January 2018.
Acta Neuropathol Commun
December 2024
Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
The accumulation of abnormal phosphorylated Tau protein (pTau) in neurons of the brain is a pathological hallmark of Alzheimer's disease (AD). PTau pathology also occurs in the retina of AD cases. Accordingly, questions arise whether retinal pTau can act as a potential seed for inducing cerebral pTau pathology and whether retinal pTau pathology causes degeneration of retinal neurons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!