Rare earth bisphthalocyanines (MPc) are of particular interest because of their behavior as single-molecular magnets, which makes them suitable for applications in molecular spintronics, high-density data storage and quantum computation. Nevertheless, MPc are not commercially available, and the synthesis routes are mainly focused on obtaining substituted phthalocyanines. Two preparation routes depend on the precursor: synthesis from phthalonitrile (PN) and the metalation of free or dilithium phthalocyanine (HPc and LiPc). In both options, byproducts such as free-base phthalocyanine and in the first route additional PN oligomers are generated, which influence the MPc yield. There are three preparation methods for these routes: heating, microwave radiation and reflux. In this research, solvothermal synthesis was applied as a new approach to prepare yttrium, lanthanum, gadolinium and terbium unsubstituted bisphthalocyanines using LiPc and the rare earth(III) acetylacetonates. Purification by sublimation gave high product yields compared to those reported, namely 68% for YPc, 43% for LaPc, 63% for GdPc and 62% for TbPc, without any detectable presence of HPc. Characterization by infrared, Raman, ultraviolet-visible and X-ray photoelectron spectroscopy as well as elemental analysis revealed the main featuresof the four bisphthalocyanines, indicating the success of the synthesis of the complexes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11173967 | PMC |
http://dx.doi.org/10.3390/molecules29112690 | DOI Listing |
Adv Sci (Weinh)
December 2024
New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
Radiodynamic therapy that employs X-rays to trigger localized reactive oxygen species (ROS) generation can tackle the tissue penetration issue of phototherapy. Although calcium tungstate (CaWO) shows great potential as a radiodynamic agent benefiting from its strong X-ray absorption and the ability to generate electron-hole (e-h) pairs, slow charge carrier transfer and fast e-h recombination greatly limit its ROS-generating performance. Herein, via a one-pot wet-chemical method, oxygen vacancy-rich amorphous/crystalline heterophase CaWO nanoparticles (Ov-a/c-CaWO NPs) with enhanced radiodynamic effect are synthesized for radiodynamic-immunotherapy of cancer.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, No. 8 Anji East Road, Zhuhai 519040, China. Electronic address:
The synthesis of multi-wavelength emission fluorescent metal-organic framework sensors has received widespread attention in recent years. Under solvothermal conditions, a series of triple-emission fluorescent sensors were fabricated by in situ encapsulation of red emitting Eosin Y and green emitting 9,10-bis(phenylethynyl)anthracene (BPEA) into a blue emitting naphthalene-based Zr-MOF. By combining the dye quantity regulation and the resonance energy transfer between MOFs and dyes, the single-phase EY&BPEA@Zr-MOFs exhibited tunable triple-emission fluorescence.
View Article and Find Full Text PDFNanoscale Adv
December 2024
Department of Chemical Engineering, University of Manchester Manchester M13 9PL UK
Nanocrystals are widely explored for a range of medical, imaging, sensing, and energy conversion applications. CdS nanocrystals have been reported as excellent photocatalysts, with thin film CdS also highly important in photovoltaic devices. To optimise properties of nanocrystals, control over phase, facet, and morphology are vital.
View Article and Find Full Text PDFRSC Adv
December 2024
ICSM, University Montpellier, CEA, CNRS, ENSCM 30207 Marcoule France
Carbon dots are a subset of carbon nanomaterials with fluorescent properties that render them attractive for various potential applications such as bioimaging and sensing. The past years saw significant progress being made in the understanding of the formation and the underlying fluorescent property. Nevertheless, efforts are still necessary to unravel the formation of carbon dots and the origin of their luminescence, especially for new types of precursor material such as polycyclic aromatic compounds.
View Article and Find Full Text PDFMolecules
November 2024
Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China.
The design and synthesis of novel lanthanide-based coordination polymers (Ln-CPs) from flexible organic ligands is still attractive and challenging. In this work, two isostructural Ln-CPs with a unique 2D network, namely, [Ln(HL)(DMF)]] (Ln = Dy for , Tb for ) based on a flexible polycarboxylic acid ligand hexakis(4-carboxylato-phenoxy)cyclotriphosphazene (HL), have been solvothermally synthesized and structurally characterized. Significantly, it is the first observation of polycarboxylic acid ligands participating in coordination in the construction of coordination polymers in the form of semi-deprotonation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!