Utilizing iron chloride as a Lewis acid catalyst, we developed a straightforward and mild oxidative cross-coupling reaction between quinoxalinones and indoles, yielding a series of versatile 3-(indol-3-yl)quinoxalin-2-one derivatives. This approach allows for the incorporation of a wide array of functional groups into the final products, demonstrating its synthetic versatility. Notably, the method was successfully scaled up to gram-scale reactions while maintaining high yields. Our mechanistic investigation indicates that iron chloride serves as a catalyst to facilitate the formation of key intermediates which subsequently undergo oxidation to afford the desired products. The merits of this protocol include its cost effectiveness, operational simplicity, and the ease of product isolation via filtration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11173961 | PMC |
http://dx.doi.org/10.3390/molecules29112649 | DOI Listing |
Angew Chem Int Ed Engl
December 2024
National University of Singapore Department of Chemistry, Department of Chemistry, 3 Science Drive 3, 117543, Singapore, SINGAPORE.
Asymmetric synthesis relies on seamless transmission of stereochemical information from a chiral reagent/catalyst to a prochiral substrate. The disruption by substrates' structural changes presents a hurdle in innovating generality-oriented asymmetric catalysis. Here, we report a strategy for substrate adaptability by exploiting a fundamental physicochemical phenomenon-ion hydration, in developing remote desymmetrization to access P-stereogenic triarylphosphine oxides and sulfides.
View Article and Find Full Text PDFChem Asian J
December 2024
IOCB CAS: Ustav organicke chemie a biochemie Akademie ved Ceske republiky, Chemistry, 16000, CZECHIA.
Single-atom-based Metal-Organic Frameworks (MOFs) hold great promising candidates for heterogeneous catalysis, demonstrating outstanding catalytic activity and exceptional product selectivity. This is attributed to their optimal atom utilization, high surface energy, and the presence of unsaturated coordination environments. Here in, we have developed a nickel single-atom catalyst (UiO-66/Ni) featuring Ni single atoms covalently attached to defect-engineered Zr-oxide clusters within the stable UiO-66 framework, synthesized via a straightforward solution impregnation method.
View Article and Find Full Text PDFSmall
December 2024
LSRE-LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, Porto, 4200-465, Portugal.
The oxidative cross-coupling of benzyl alcohol (BA) and benzylamine (BZA) is employed for the production of the corresponding imine, N-benzylidenebenzylamine (BZI), under visible light irradiation (light-emitting diodes (LE with λ = 417 nm) and mild reaction conditions. The cesium bismuth halide perovskites (CsBiBr, CBB) are synthesized by a one-step solution process as a sustainable alternative for the widely used Pb-halide perovskites. The CBB photocatalyst is immobilized on a polyethylene terephthalate (PET) structure designed explicitly for three-dimensional (3D) printing to operate in both batch and continuous modes to overcome the need for a final catalyst separation step.
View Article and Find Full Text PDFScience
December 2024
Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, USA.
Modern medicinal chemists are targeting more complex molecules to address challenging biological targets, which leads to synthesizing structures with higher sp character (Fsp) to enhance specificity as well as physiochemical properties. Although traditional flat, high-fraction sp molecules, such as pyridine, can be decorated through electrophilic aromatic substitution and palladium (Pd)-based cross-couplings, general strategies to derivatize three-dimensional (3D) saturated molecules are far less developed. In this work, we present an approach for the rapid, modular, enantiospecific, and diastereoselective functionalization of piperidine (saturated analog of pyridine), combining robust biocatalytic carbon-hydrogen oxidation with radical cross-coupling.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2024
Department of Chemistry, CMS College Kottayam (Autonomous) Mahatma Gandhi University, Kottayam, Kerala, 686001, India.
A detailed theoretical study delving into the molecular mechanisms of the Ullmann-type -arylation reactions catalyzed by manganese and zinc metal ions has been investigated with the aid of the density functional theory (DFT) method. In contrast to the redox-active mechanisms proposed for classical Ullmann-type condensation reaction, a redox-neutral mechanism involving σ-bond metathesis emerged as the most appealing pathway for the investigated high-valent Mn(II) and Zn(II)-catalyzed -arylation reactions. The mechanism remains invariant with respect to the nature of the central metal, ligand, base, This unusuality in the mechanism has been dissected by considering three cases: ligand-free and ligand-assisted Mn(II)-catalyzed -arylation reaction and ligand-assisted Zn(II)-catalyzed -arylation reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!