Organic-inorganic hybrids represent a good solution to improve the solubility and dissolution rates of poorly soluble drugs whose number has been increasing in the last few years. One of the most diffused inorganic matrices is hydroxyapatite (HAP), which is a biocompatible and osteoconductive material. However, the understanding of the hybrids' functioning mechanisms is in many cases limited; thus, thorough physicochemical characterizations are needed. In the present paper, we prepared hybrids of pure and Mg-doped hydroxyapatite with meloxicam, a drug pertaining to the Biopharmaceutical Classification System (BCS) class II, i.e., drugs with low solubility and high permeability. The hybrids' formation was demonstrated by FT-IR, which suggested electrostatic interactions between HAP and drug. The substitution of Mg in the HAP structure mainly produced a structural disorder and a reduction in crystallite sizes. The surface area of HAP increased after Mg doping from 82 to 103 mg as well as the pore volume, justifying the slightly high drug amount adsorbed by the Mg hybrid. Notwithstanding the low drug loading on the hybrids, the solubility, dissolution profiles and wettability markedly improved with respect to the drug alone, particularly for the Mg doped one, which was probably due to the main distribution of the drug on the HAP surface.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11173451 | PMC |
http://dx.doi.org/10.3390/molecules29112419 | DOI Listing |
AAPS PharmSciTech
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
Isoniazid (INH) and rifampicin (RIF) are the two main drugs used for the management of tuberculosis. They are often used as a fixed drug combination, but their delivery is challenged by suboptimal solubility and physical instability. This study explores the potential of active pharmaceutical ingredient-ionic liquids (API-ILs) to improve the physicochemical and pharmaceutical properties of INH and RIF.
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
Albendazole serves as a broad-spectrum anthelmintic medication for treating hydatid cysts and neurocysticercosis. However, its therapeutic effectiveness is limited by poor solubility. Nanocrystals offer a promising technology to address this limitation by enhancing drug solubility.
View Article and Find Full Text PDFDent Mater
January 2025
Department of Restorative Dentistry, University of Manitoba, Winnipeg, MB, R3E 0W2, Canada.
Objective: This study aimed to evaluate the chemical solubility (CS) and conduct a comprehensive physicochemical characterization of several experimental and commercial lithium silicate-based glass-ceramics towards an understanding of the chemical processes governing dissolution in these glass-ceramics.
Methodology: Glass-ceramic (GC) samples were categorized into two groups: experimental materials featuring lithium metasilicate crystals (GCE1 and GCE2); and five commercial brands relying mostly on lithium disilicate (Celtra®Duo, IPS e.max®CAD, Straumann®n!ce®, CEREC Tessera™, and VITA Suprinity®).
Pakistani lignite (PLC) was thermally dissolved at 300 °C using isopropanol (IPA) to obtain a soluble portion (SP) and insoluble portion (ISP). Proximate analysis, ultimate analysis, Fourier transform infrared spectrometry (FTIR), thermogravimetric analysis (TG-DTG) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) results were compared to explore the influence of the thermal dissolution process on the pyrolysis for PLC and ISP. Results showed that the thermal dissolution process mainly dissolved some light components of low-rank coal, and more phenols, aldehydes, esters and ethers were found in the SP, indicating that low-carbon alcohols can break the ether bridge bond in coal and generate oxygen-containing organic compounds (OCOCs).
View Article and Find Full Text PDFNat Rev Chem
January 2025
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, China.
Aqueous zinc-based batteries have garnered the attention of the electrochemical energy storage community, but they suffer from electrolytes freezing and sluggish kinetics in cold environments. In this Review, we discuss the key parameters necessary for designing anti-freezing aqueous zinc electrolytes. We start with the fundamentals related to different zinc salts and their dissolution and solvation behaviours, by highlighting the effects of anions and additives on salt solubility, ion diffusion and freezing points.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!