For practical reasons, in many studies PD-L1 expression is measured by combined positive score (CPS) from a single tumor sample. This does not reflect the heterogeneity of PD-L1 expression in head and neck squamous cell carcinoma (HNSCC). We investigated the extent and relevance of PD-L1 expression heterogeneity in HNSCC analyzing primary tumors and recurrences (LRs), as well as metastases. Tumor tissue from 200 HNSCC patients was immunohistochemically stained for PD-L1 and analyzed using image-analysis software QuPath v3.4 with multiple specimens per patient. CPS was ≥20 in 25.6% of primary tumors. Intra-tumoral heterogeneity led to a therapeutically relevant underestimation of PD-L1 expression in 28.7% of patients, when only one specimen per patient was analyzed. Inter-tumoral differences in PD-L1 expression between primary tumors and lymph node metastasis (LNM) or LR occurred in 44.4% and 61.5% (CPS) and in 40.6% and 50% of cases (TPS). Overall survival was increased in patients with CPS ≥ 1 vs. CPS < 1 in primary tumors and LNM (hazard ratio: 0.46 and 0.35; < 0.005); CPS in LR was not prognostic. Our analysis shows clinically relevant intra- and inter-sample heterogeneity of PD-L1 expression in HNSCC. To account for heterogeneity and improve patient selection for immunotherapy, multiple sample analyses should be performed, particularly in patients with CPS/TPS < 1.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11171694 | PMC |
http://dx.doi.org/10.3390/cancers16112103 | DOI Listing |
Discov Oncol
January 2025
Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China.
Monotherapy with anti-programmed cell death protein 1 (PD-1) monoclonal antibody has been approved for the treatment of advanced non-small cell lung cancer with positive programmed cell death-ligand 1 (PD-L1) expression and oncogene wild type, which revealed survival benefit compared with chemotherapy. Nevertheless, certain patients develop rapid progression on anti-PD-1 inhibitor monotherapy. This novel pattern is called hyperprogressive disease (HPD), and the underlying mechanism and molecular characteristics still leaves not clear.
View Article and Find Full Text PDFCancer Immunol Res
January 2025
Light Chain Bioscience - Novimmune SA, Geneva, Switzerland.
Despite advances in cancer immunotherapy, such as targeting the PD-1/PD-L1 axis, a substantial number of patients harbor tumors that are resistant or relapse. Selective engagement of T-cell co-stimulatory molecules with bispecific antibodies may offer novel therapeutic options by enhancing signal 1-driven activation occurring via T-cell receptor engagement. In this study, we report the development and preclinical characterization of NI-3201, a PD-L1×CD28 bispecific antibody generated on the κλ-body platform that was designed to promote T-cell activity and antitumor function through a dual mechanism of action.
View Article and Find Full Text PDFJ Investig Med
January 2025
Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei province, China.
Pancreatic cancer is characterized by occult onset, low early diagnosis rate, rapid progress, and poor prognosis. Due to the low response rate and low PD-L1 expression in pancreatic cancer, the therapeutic application of PL-L1 inhibitors in pancreatic cancer is greatly limited. In vitro studies showed that the expression of PD-L1 increased in pancreatic cancer cells stimulated by fluorouracil (5-FU).
View Article and Find Full Text PDFBioact Mater
March 2025
School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, 264005, China.
Despite significant advances in targeted therapies and immunotherapies, non-small cell lung cancer (NSCLC) continues to present a global health challenge, with a modest five-year survival rate of 28 %, largely due to the emergence of treatment-resistant and metastatic tumors. In response, we synthesized a novel bioactive compound, ethyl 6-chlorocoumarin-3-carboxylyl L-theanine (TClC), which significantly inhibited NSCLC growth, epithelial mesenchymal transition (EMT), migration, and invasion and tumor growth and metastasis without inducing toxicity. TClC disrupts autocrine loops that promote tumor progression, particularly in stem-like CD133-positive NSCLC (CD133+ LC) cells, which are pivotal in tumor metastasis.
View Article and Find Full Text PDFFront Artif Intell
December 2024
Department of Pathology, Daping Hospital, Army Medical University, Chongqing, China.
Background: Detecting programmed death ligand 1 (PD-L1) expression based on immunohistochemical (IHC) staining is an important guide for the treatment of lung cancer with immune checkpoint inhibitors. However, this method has problems such as high staining costs, tumor heterogeneity, and subjective differences among pathologists. Therefore, the application of deep learning models to segment and quantitatively predict PD-L1 expression in digital sections of Hematoxylin and eosin (H&E) stained lung squamous cell carcinoma is of great significance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!