Compared to the general population, patients with inflammatory bowel disease (IBD) are less likely to be vaccinated, putting them at an increased risk of vaccine-preventable illnesses. This risk is further compounded by the immunosuppressive therapies commonly used in IBD management. Therefore, developing new treatments for IBD that maintain immune function is crucial, as successful management can lead to better vaccination outcomes and overall health for these patients. Here, we investigate the potential of recombinant banana lectin (rBanLec) as a supporting therapeutic measure to improve IBD control and possibly increase vaccination rates among IBD patients. By examining the therapeutic efficacy of rBanLec in a murine model of experimental colitis, we aim to lay the foundation for its application in improving vaccination outcomes. After inducing experimental colitis in C57BL/6 and BALB/c mice with 2,4,6-trinitrobenzene sulfonic acid, we treated animals orally with varying doses of rBanLec 0.1-10 µg/mL (0.01-1 µg/dose) during the course of the disease. We assessed the severity of colitis and rBanLec's modulation of the immune response compared to control groups. rBanLec administration resulted in an inverse dose-response reduction in colitis severity (less pronounced weight loss, less shortening of the colon) and an improved recovery profile, highlighting its therapeutic potential. Notably, rBanLec-treated mice exhibited significant modulation of the immune response, favoring anti-inflammatory pathways (primarily reduction in a local [TNFα]/[IL-10]) crucial for effective vaccination. Our findings suggest that rBanLec could mitigate the adverse effects of immunosuppressive therapy on vaccine responsiveness in IBD patients. By improving the underlying immune response, rBanLec may increase the efficacy of vaccinations, offering a dual benefit of disease management and prevention of vaccine-preventable illnesses. Further studies are required to translate these findings into clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11175119 | PMC |
http://dx.doi.org/10.3390/nu16111705 | DOI Listing |
Plant Cell Rep
January 2025
MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou, 510631, China.
The three SDEs of CLas were expressed in citrus leaves by AuNPs-PEI mediated transient expression system, and promoted the proliferation of CLas and inhibited citrus immunity. Huanglongbing (HLB) is the most severe bacterial disease of citrus caused by Candidatus Liberibacter asiaticus (CLas). CLas suppress host immune responses and promote infection by sec-dependent effectors (SDEs), thus insight into HLB pathogenesis is urgently needed to develop effective management strategies.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Division of Hematology/Oncology, The University of Texas Health Sciences Center at Houston, McGovern Medical School, 6431 Fannin Street, MSB 5.216, Houston, TX, 77030, USA.
The established protocol for the management of acute myeloid leukemia (AML) has traditionally involved the administration of induction chemotherapy, followed by consolidation chemotherapy, and subsequent allogeneic stem cell transplantation for eligible patients. However, the prognosis for individuals with relapsed and refractory AML remains unfavorable. In response to the necessity for more efficacious therapeutic modalities, targeted immunotherapy has emerged as a promising advancement in AML treatment.
View Article and Find Full Text PDFCancer Biol Ther
December 2025
Department of Pharmacology, Physiology, and Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA.
Adaptive immune resistance in cancer describes the various mechanisms by which tumors adapt to evade anti-tumor immune responses. IFN-γ induction of programmed death-ligand 1 (PD-L1) was the first defined and validated adaptive immune resistance mechanism. The endoplasmic reticulum (ER) is central to adaptive immune resistance as immune modulatory secreted and integral membrane proteins are dependent on ER.
View Article and Find Full Text PDFJ Infect Dev Ctries
December 2024
Students' Research Committee, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
Introduction: Inflammation plays a role in coronavirus disease 2019 (COVID-19) pathophysiology and anti-inflammatory drugs may help reduce the disease severity. Levamisole is an anthelmintic drug with immunomodulatory and possible antiviral effects. This study aimed to evaluate the role of levamisole in the treatment of patients with COVID-19.
View Article and Find Full Text PDFExpert Rev Mol Diagn
January 2025
Department of Pediatrics, Polytechnic University of Marche, Ancona, Italy.
Introduction: Non-Celiac Gluten Sensitivity (NCGS) is a common disorder characterized by symptoms resembling those of irritable bowel syndrome. In recent years there has been progress in the understanding of the pathogenic pathways and data suggest that NCGS has a distinct immunological profile that differs from celiac disease (CeD). This has fostered the search for a specific biomarker of NCGS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!