Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Breeding salt-tolerant crops is necessary to reduce food insecurity. Prebreeding populations are fundamental for uncovering tolerance alleles from wild germplasm. To obtain a physiological interpretation of the agronomic salt tolerance and better criteria to identify candidate genes, quantitative trait loci (QTLs) governing productivity-related traits in a population of recombinant inbred lines (RIL) derived from were reanalyzed using an SNP-saturated linkage map and clustered using QTL meta-analysis to synthesize QTL information. A total of 60 out of 85 QTLs were grouped into 12 productivity MQTLs. Ten of them were found to overlap with other tomato yield QTLs that were found using various mapping populations and cultivation conditions. The MQTL compositions showed that fruit yield was genetically associated with leaf water content. Additionally, leaf Cl and K contents were related to tomato productivity under control and salinity conditions, respectively. More than one functional candidate was frequently found, explaining most productivity MQTLs, indicating that the co-regulation of more than one gene within those MQTLs might explain the clustering of agronomic and physiological QTLs. Moreover, MQTL1.2, MQTL3 and MQTL6 point to the root as the main organ involved in increasing productivity under salinity through the wild allele, suggesting that adequate rootstock/scion combinations could have a clear agronomic advantage under salinity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11172916 | PMC |
http://dx.doi.org/10.3390/ijms25116055 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!