A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-Yield α-Synuclein Purification and Ionic Strength Modification Pivotal to Seed Amplification Assay Performance and Reproducibility. | LitMetric

AI Article Synopsis

  • Alpha-synuclein seed amplification assays (αSyn-SAAs) are emerging diagnostic tools for Parkinson's disease that detect misfolded proteins and amplify their signals through an in vitro process.* -
  • Recent studies demonstrate that various biospecimens, such as cerebrospinal fluid (CSF), skin, and submandibular glands, can effectively differentiate between Parkinson's patients and healthy individuals using these assays.* -
  • To improve assay reliability and reduce variability, a new high-yield purification protocol for αSyn protein was developed, resulting in significant yields and enhanced performance in distinguishing between disease and control tissues.*

Article Abstract

Alpha-synuclein seed amplification assays (αSyn-SAAs) have emerged as promising diagnostic tools for Parkinson's disease (PD) by detecting misfolded αSyn and amplifying the signal through cyclic shaking and resting in vitro. Recently, our group and others have shown that multiple biospecimens, including CSF, skin, and submandibular glands (SMGs), can be used to seed the aggregation reaction and robustly distinguish between patients with PD and non-disease controls. The ultrasensitivity of the assay affords the ability to detect minute quantities of αSyn in peripheral tissues, but it also produces various technical challenges of variability. To address the problem of variability, we present a high-yield αSyn protein purification protocol for the efficient production of monomers with a low propensity for self-aggregation. We expressed wild-type αSyn in BL21 , lysed the cells using osmotic shock, and isolated αSyn using acid precipitation and fast protein liquid chromatography (FPLC). Following purification, we optimized the ionic strength of the reaction buffer to distinguish the fluorescence maximum (Fmax) separation between disease and healthy control tissues for enhanced assay performance. Our protein purification protocol yielded high quantities of αSyn (average: 68.7 mg/mL per 1 L of culture) and showed highly precise and robust αSyn-SAA results using brain, skin, and SMGs with inter-lab validation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11172462PMC
http://dx.doi.org/10.3390/ijms25115988DOI Listing

Publication Analysis

Top Keywords

ionic strength
8
seed amplification
8
assay performance
8
quantities αsyn
8
protein purification
8
purification protocol
8
αsyn
6
high-yield α-synuclein
4
purification
4
α-synuclein purification
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!