AI Article Synopsis

Article Abstract

A plethora of pathophysiological events have been shown to play a synergistic role in neurodegeneration, revealing multiple potential targets for the pharmacological modulation of Alzheimer's disease (AD). In continuation to our previous work on new indole- and/or donepezil-based hybrids as neuroprotective agents, the present study reports on the beneficial effects of lead compounds of the series on key pathognomonic features of AD in both cellular and in vivo models. An enzyme-linked immunosorbent assay (ELISA) was used to evaluate the anti-fibrillogenic properties of 15 selected derivatives and identify quantitative changes in the formation of neurotoxic β-amyloid (Aβ42) species in human neuronal cells in response to treatment. Among the most promising compounds were and , which have recently shown excellent antioxidant and anticholinesterase activities, and, therefore, have been subjected to further in vivo investigation in mice. An acute toxicity study was performed after intraperitoneal (i.p.) administration of both compounds, and 1/10 of the LD (35 mg/kg) was selected for subacute treatment (14 days) with scopolamine in mice. Donepezil (DNPZ) and/or galantamine (GAL) were used as reference drugs, aiming to establish any pharmacological superiority of the multifaceted approach in battling hallmark features of neurodegeneration. Our promising results give first insights into emerging disease-modifying strategies to combine multiple synergistic activities in a single molecule.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11172853PMC
http://dx.doi.org/10.3390/ijms25115969DOI Listing

Publication Analysis

Top Keywords

donepezil-based hybrids
8
alzheimer's disease
8
vivo investigation
8
tailored melatonin-
4
melatonin- donepezil-based
4
hybrids targeting
4
targeting pathognomonic
4
pathognomonic changes
4
changes alzheimer's
4
disease vitro
4

Similar Publications

Alzheimer's disease (AD) involves a complex pathophysiology with multiple interconnected subpathologies, including protein aggregation, impaired neurotransmission, oxidative stress, and microglia-mediated neuroinflammation. Current treatments, which generally target a single subpathology, have failed to modify the disease's progression, providing only temporary symptom relief. Multi-target drugs (MTDs) address several subpathologies, including impaired aggregation of pathological proteins.

View Article and Find Full Text PDF

A plethora of pathophysiological events have been shown to play a synergistic role in neurodegeneration, revealing multiple potential targets for the pharmacological modulation of Alzheimer's disease (AD). In continuation to our previous work on new indole- and/or donepezil-based hybrids as neuroprotective agents, the present study reports on the beneficial effects of lead compounds of the series on key pathognomonic features of AD in both cellular and in vivo models. An enzyme-linked immunosorbent assay (ELISA) was used to evaluate the anti-fibrillogenic properties of 15 selected derivatives and identify quantitative changes in the formation of neurotoxic β-amyloid (Aβ42) species in human neuronal cells in response to treatment.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is considered a complex neurodegenerative condition which warrants the development of multitargeted drugs to tackle the key pathogenetic mechanisms of the disease. In this study, two novel series of melatonin- and donepezil-based hybrid molecules with hydrazone () or sulfonyl hydrazone () fragments were designed, synthesized, and evaluated as multifunctional ligands against AD-related neurodegenerative mechanisms. Two lead compounds ( and ) exhibited a well-balanced multifunctional profile, demonstrating intriguing acetylcholinesterase (AChE) inhibition, promising antioxidant activity assessed by DPPH, ABTS, and FRAP methods, as well as the inhibition of lipid peroxidation in the linoleic acid system.

View Article and Find Full Text PDF

A new series of eight multifunctional thalidomide-donepezil hybrids were synthesized based on the multi-target-directed ligand strategy and evaluated as potential neuroprotective, cholinesterase inhibitors and anti-neuroinflammatory agents against neurodegenerative diseases. A molecular hybridization approach was used for structural design by combining the -benzylpiperidine pharmacophore of donepezil and the isoindoline-1,3-dione fragment from the thalidomide structure. The most promising compound, PQM-189 (3g), showed good AChE inhibitory activity with an IC value of 3.

View Article and Find Full Text PDF

Donepezil-based hybrids as multifunctional anti-Alzheimer's disease chelating agents: Effect of positional isomerization.

J Inorg Biochem

May 2020

Centro de Química Estrutural and Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av, Rovisco Pais 1, 1049-001 Lisboa, Portugal. Electronic address:

The intricate and multifactorial nature of Alzheimer's disease (AD) requires the development of compounds able to hit different pathophysiological targets, such as cholinergic dysfunction, deposits of amyloid beta (Aβ) peptide and metal dyshomeostasis. In order to continue the search for new anti-AD drugs, a design strategy was once more followed based on repositioning donepezil (DNP) drug, by ortho-attaching a benzylpiperidine mimetic of DNP moiety to a hydroxyphenyl-benzimidazole (BIM) chelating unit (compound 1). Herein, compound 1 and a positional isomer 2 are compared in terms of their potential multiple properties: both present good acetylcholinesterase (AChE) inhibition (low μmolar range) and are moderate/good inhibitors of Aβ self- and Cu-mediated aggregation, the inhibition process being mainly due to ligand intercalation between the β-sheets of the fibrils; compound 1 has a higher chelating capacity towards Cu and Zn (pCu = 14.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!