Glutamate Receptor-like (GLR) Family in : Genome-Wide Identification and Functional Analysis in Resistance to .

Int J Mol Sci

Key Laboratory of Biology and Ecological Control of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.

Published: May 2024

Plant glutamate receptor-like channels (GLRs) are homologs of animal ionotropic glutamate receptors. GLRs are critical in various plant biological functions, yet their genomic features and functions in disease resistance remain largely unknown in many crop species. Here, we report the results on a thorough genome-wide study of the family in oilseed rape () and their role in resistance to the fungal pathogen . A total of 61 were identified in oilseed rape. They comprised three groups, as in . Detailed computational analyses, including prediction of domain and motifs, cellular localization, -acting elements, PTM sites, and amino acid ligands and their binding pockets in BnGLR proteins, unveiled a set of group-specific characteristics of the BnGLR family, which included chromosomal distribution, motif composition, intron number and size, and methylation sites. Functional dissection employing virus-induced gene silencing of in oilseed rape and mutants of homologs demonstrated that / positively, while / and / negatively, regulated plant resistance to , indicating that genes were differentially involved in this resistance. Our findings reveal the complex involvement of in resistance to and provide clues for further functional characterization of .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11172227PMC
http://dx.doi.org/10.3390/ijms25115670DOI Listing

Publication Analysis

Top Keywords

oilseed rape
12
glutamate receptor-like
8
resistance
6
receptor-like glr
4
glr family
4
family genome-wide
4
genome-wide identification
4
identification functional
4
functional analysis
4
analysis resistance
4

Similar Publications

The determinate inflorescence trait of L. is associated with various desirable agricultural characteristics. ( and ), which encode the transcription factor have previously been identified as candidate genes controlling this trait through map-based cloning.

View Article and Find Full Text PDF

Rapeseed ( L.) is known for its high-quality seed oil and protein content. However, its use in animal feed is restricted due to antinutritional factors present in the seedcake, with sinapine being one of the main compounds that reduces palatability.

View Article and Find Full Text PDF

Rhizosphere microbiomes are constantly mobilized during plant-pathogen interactions, and this, in turn, affects their interactions. However, few studies have examined the activities of rhizosphere microbiomes in plants with different susceptibilities to soil-borne pathogens, especially those that cause clubroot disease. In this study, we compared the rhizosphere bacterial community in response to infection of among the four different clubroot susceptibility cultivars of oilseed rape ().

View Article and Find Full Text PDF

A breeding method for Ogura CMS restorer line independent of restorer source in .

Front Genet

January 2025

National Rapeseed Genetic Improvement Center, Chengdu Academy of Agriculture and Forestry Sciences, Chengdu Research Branch, Chengdu, China.

The Ogura cytoplasmic male sterility (CMS) line of has gained significant attention for its use in harnessing heterosis. It remains unaffected by temperature and environment and is thorough and stable. The Ogura cytoplasmic restorer line of is derived from the distant hybridization of and , but it carried a large number of radish fragments into , because there is no homologous allele of the restorer gene in , transferring it becomes challenging.

View Article and Find Full Text PDF

Glyphosate (Gly) is a widely used herbicide for weed control in agriculture, but it can also adversely affect crops by impairing growth, reducing yield, and disrupting nutrient uptake, while inducing toxicity. Therefore, adopting integrated eco-friendly approaches and understanding the mechanisms of glyphosate tolerance in plants is crucial, as these areas remain underexplored. This study provides proteome insights into Si-mediated improvement of Gly-toxicity tolerance in Brassica napus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!