The aim of this study is to explore the mechanism of IL-17A infection in the development of bacterial mastitis in dairy cows. In this study, RT-qPCR and ELISA were used to measure the promoting effect of IL-17A on the generation of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) and chemokine (IL-8). In addition, Western blot (WB) was applied to measure the influences of IL-17A on the inflammation-related ERK and p38 proteins in the MAPK pathways. The results show that under the stimulation of LPS on cow mammary epithelial cells (CMECs), cytokines IL-1β, IL-6, IL-8, TNF-α, and IL-17A will exhibit significantly increased expression levels ( < 0.05). With inhibited endogenous expression of IL-17A, cytokines IL-1β, IL-6, IL-8, and TNF-α will present reduced genetic expression ( < 0.01), with reduced phosphorylation levels of ERK and p38 proteins in the MAPK signaling pathways ( < 0.001). Upon the exogenous addition of the IL-17A cytokine, the genetic expression of cytokines IL-1β, IL-6, IL-8, and TNF-α will increase ( < 0.05), with increased phosphorylation levels of the ERK and p38 proteins in the MAPK signaling pathways ( < 0.001). These results indicate that under the stimulation of CMECs with LPS, IL-17A can be expressed together with relevant inflammatory cytokines. Meanwhile, the inflammatory responses of mammary epithelial cells are directly proportional to the expression levels of IL-17A inhibited alone or exogenously added. In summary, this study shows that IL-17A could be used as an important indicator for assessing the bacterial infections of mammary glands, indicating that IL-17A could be regarded as one potential therapeutic target for mastitis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11171030PMC
http://dx.doi.org/10.3390/ani14111572DOI Listing

Publication Analysis

Top Keywords

il-1β il-6
16
mammary epithelial
12
epithelial cells
12
mapk signaling
12
signaling pathways
12
erk p38
12
p38 proteins
12
proteins mapk
12
cytokines il-1β
12
il-6 il-8
12

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A., Philadelphia, PA, USA.

Background: The vicious cycle between depression and dementia increases the risk of Alzheimer's Disease (AD) pathogenesis and pathology. This study investigates therapeutic effectiveness versus side effects and the underlying mechanisms of intranasal dantrolene nanoparticles (IDNs) to treat depression behavior and memory loss in 5XFAD mice.

Method: 5XFAD and wild-type B6SJLF1/J mice were treated with IDNs (IDN, 5 mg/kg) in Ryanodex formulation for a duration of 12 weeks.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Patiala, India.

Background: Neuroinflammation plays an important role in progression of Alzheimer's disease (AD). Interlukin-6 (IL-6) is well identified marker in initiating and regulating inflammation, and formation of senile plaques in brain. Therefore, simultaneous inhibition of both IL-6 and acetylcholinesterase (AChE) may be an effective strategy for AD.

View Article and Find Full Text PDF

Background: Studies suggest a potential link between stroke and Alzheimer's disease wherein stroke may serve as a trigger for the onset or acceleration of Alzheimer's pathogenesis as damage to the brain's blood vessels may lead to the accumulation of amyloid beta protein which is a hallmark of Alzheimer's disease. Recent research has shown that stroke treatment may hold the key to treating Alzheimer's disease. The anti-inflammatory potentials of Cholinergic signaling are a novel therapeutic target in memory decline associated with Alzheimer's.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.

Background: Various studies have evidenced the neuroprotective role of SIRT1 activator. However, whether SIRT1 activator, Piceatannol pharmacological treatment is protective in chronic unpredictable stress induced memory dysfunction remains unknown. Therefore, this study design included testing the hypothesis that Piceatannol administered in chronic unpredictable stress induced memory dysfunction mice shows protective effects, explores & probes underlying the activation of SIRT1 pathway.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, U.S.A., Philadelphia, PA, USA.

Background: This study investigates the therapeutic versus side effects of intranasal lithium chloride (LiCl) in Ryanodex formulation vehicle (RFV) to inhibit inflammation and pyroptosis and to ameliorate on cognitive dysfunction and depressive behavior in 5XFAD mice.

Method: 5XFAD and wild type (WT) B6SJLF1/J mice were treated with intranasal or oral LiCl (3 mM/kg) dissolved in RFV starting at 2 or 9 months old and the continuous treatment lasted for 12 weeks. Behavior was examined for depression, cognition, olfaction, and motor function at the ages of 5 or 12 months.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!