Fused Deposition Modeling (FDM) is a well-established manufacturing method for producing both prototype and functional components. This study investigates the mechanical properties of FDM components by material and process-related influencing variables. Tensile tests were conducted on seven different materials in their raw filament form, two of which were fiber-reinforced, to analyze their material-related influence. To cover a wide range from standard to advanced materials relevant for load-carrying components as well as their respective variations, polylactic acid (PLA), 30% wood-fiber-reinforced PLA, acrylonitrile butadiene styrene (ABS), polycarbonate (PC), a blend of ABS and PC, Nylon, and 30% glass-fiber-reinforced Nylon were selected. The process-related influencing variables were studied using the following process parameters: layer thickness, nozzle diameter, build orientation, nozzle temperature, infill density and pattern, and raster angle. The first test series revealed that the addition of wood fibers significantly worsened the mechanical behavior of PLA due to the lack of fiber bonding to the matrix and significant pore formation. The polymer blend of ABS and PC only showed improvements in stiffness. Significant strength and stiffness improvements were found by embedding glass fibers in Nylon, despite partially poor fiber-matrix bonding. The materials with the best properties were selected for the process parameter analysis. When examining the impact of layer thickness on part strength, a clear correlation was evident. Smaller layer thicknesses resulted in higher strength, while stiffness did not appear to be affected. Conversely, larger nozzle diameters and lower nozzle temperatures only positively impacted stiffness, with little effect on strength. The part orientation did alter the fracture behavior of the test specimens. Although an on-edge orientation resulted in higher stiffness, it failed at lower stresses. Higher infill densities and infill patterns aligned with the load direction led to the best mechanical results. The raster angle had a significant impact on the behavior of the printed bodies. An alternating raster angle resulted in lower strengths and stiffness compared to a unidirectional raster angle. However, it also caused significant stretching due to the rotation of the beads.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11175037 | PMC |
http://dx.doi.org/10.3390/polym16111576 | DOI Listing |
Polymers (Basel)
December 2024
CESTER-Research Center for Industrial Robots Simulation and Testing, Technical University of Cluj-Napoca, 400114 Cluj-Napoca, Romania.
This study explores the experimental and theoretical optimization of process parameters to improve the quality of 3D-printed parts produced using the Fused Deposition Modeling technique. To ensure the cost-effective production of high-quality components, advancements in printing strategies are essential. This research identifies optimal 3D printing strategies to enhance the quality of finished products.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Mechanical Engineering, University of Nevada, Las Vegas, NV 89154, USA.
Materials (Basel)
December 2024
Faculty of Mechatronics, Armament and Aerospace, Military University of Technology, 2 Gen. S. Kaliskiego Street, 00-908 Warsaw, Poland.
Advances in the development of additive manufacturing materials (AM) and the low availability of studies on the impact response of AM specimens are the main reasons for this paper. Therefore, the influence of building orientation (vertical and horizontal) and the angle of the raster (15°/-75°, 30°/-60°, 45°/-45°, and 0°/90°) on the tensile and impact strength of AM specimens was investigated. The polylactic acid (PLA)-PolyMax, Mediflex and acrylonitrile-butadiene-styrene (ABS) filaments were chosen to provide a comprehensive characterization of AM materials with versatile mechanical properties.
View Article and Find Full Text PDF3D Print Addit Manuf
December 2024
Institute of Materials Science, Joining and Forming (IMAT), BMK Endowed Professorship for Aviation, Graz University of Technology, Graz, Austria.
Materials (Basel)
December 2024
Department of Materials Science and Engineering, Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Croatia.
Despite Fused Deposition Modeling (FDM) being an economical 3D printing method known for its material versatility and ease of use, the mechanical performance of FDM-produced components is significantly influenced by process parameter settings. This study investigated the effects of the layer thickness, raster angle, build orientation, and extrusion temperature on the ultimate tensile strength (UTS) and elastic modulus of Polylactic Acid (PLA) specimens using Taguchi methods, with significance analyzed through analysis of variance (ANOVA). The results indicated that the build orientation is the primary factor affecting both the UTS and elastic modulus, with a flat orientation yielding the best performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!