Granulation of Lithium-Ion Sieves Using Biopolymers: A Review.

Polymers (Basel)

Department of Chemical Engineering, The University of Manchester, Manchester M13 9PL, UK.

Published: May 2024

The high demand for lithium (Li) relates to clean, renewable storage devices and the advent of electric vehicles (EVs). The extraction of Li ions from aqueous media calls for efficient adsorbent materials with various characteristics, such as good adsorption capacity, good selectivity, easy isolation of the Li-loaded adsorbents, and good recovery of the adsorbed Li ions. The widespread use of metal-based adsorbent materials for Li ions extraction relates to various factors: (i) the ease of preparation via inexpensive and facile templation techniques, (ii) excellent selectivity for Li ions in a matrix, (iii) high recovery of the adsorbed ions, and (iv) good cycling performance of the adsorbents. However, the use of nano-sized metal-based Lithium-ion sieves (LISs) is limited due to challenges associated with isolating the loaded adsorbent material from the aqueous media. The adsorbent granulation process employing various binding agents (e.g., biopolymers, synthetic polymers, and inorganic materials) affords composite functional particles with modified morphological and surface properties that support easy isolation from the aqueous phase upon adsorption of Li ions. Biomaterials (e.g., chitosan, cellulose, alginate, and agar) are of particular interest because their structural diversity renders them amenable to coordination interactions with metal-based LISs to form three-dimensional bio-composite materials. The current review highlights recent progress in the use of biopolymer binding agents for the granulation of metal-based LISs, along with various crosslinking strategies employed to improve the mechanical stability of the granules. The study reviews the effects of granulation and crosslinking on adsorption capacity, selectivity, isolation, recovery, cycling performance, and the stability of the LISs. Adsorbent granulation using biopolymer binders has been reported to modify the uptake properties of the resulting composite materials to varying degrees in accordance with the surface and textural properties of the binding agent. The review further highlights the importance of granulation and crosslinking for improving the extraction process of Li ions from aqueous media. This review contributes to manifold areas related to industrial application of LISs, as follows: (1) to highlight recent progress in the granulation and crosslinking of metal-based adsorbents for Li ions recovery, (2) to highlight the advantages, challenges, and knowledge gaps of using biopolymer-based binders for granulation of LISs, and finally, (3) to catalyze further research interest into the use of biopolymer binders and various crosslinking strategies to engineer functional composite materials for application in Li extraction industry. Properly engineered extractants for Li ions are expected to offer various cost benefits in terms of capital expenditure, percent Li recovery, and reduced environmental footprint.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11174407PMC
http://dx.doi.org/10.3390/polym16111520DOI Listing

Publication Analysis

Top Keywords

aqueous media
12
granulation crosslinking
12
ions
9
granulation
8
lithium-ion sieves
8
ions aqueous
8
adsorbent materials
8
adsorption capacity
8
easy isolation
8
recovery adsorbed
8

Similar Publications

Strong Anionic Fluorene Donor-Acceptor Copolyelectrolytes from Protected Hydrophobic Precursors.

Macromol Rapid Commun

January 2025

Polymer Science, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 3, Groningen, 9747 AG, The Netherlands.

Conjugated polyelectrolytes (CPEs), materials that are defined by a -conjugated backbone and charged ionic functional groups, are frequently prepared through direct polymerization of charged monomer species in aqueous media. This route is, however, often accompanied by labor-intensive work-up procedures, low yields, and ultimately results in materials that are difficult to characterize. To overcome these inconveniences, in this work protection chemistry is applied on sulfonate-functionalized fluorene monomers that are polymerized under standard Suzuki polycondensation conditions to obtain protected donor-acceptor copolymers.

View Article and Find Full Text PDF

Facile preparation of a hydrophilic Eu-based ratiometric fluorescent nanosensor for Cu ion detection and imaging in living cells.

Anal Methods

January 2025

Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China.

In this work, a hydrophilic Eu-based ratiometric fluorescent nanosensor (PAAC-Eu) was developed for Cu ion detection in aqueous solutions and imaging in living cells. The sensor was prepared a simple one-step reaction at room temperature, leveraging the synergistic coordination of commercially accessible polyacrylic acid (PAA) and coumarin-3-carboxylic acid (CCAH) with Eu ions. PAAC-Eu was easy to disperse in aqueous media and exhibited two characteristic emission bands at 406 nm and 618 nm, respectively, upon excitation at 350 nm.

View Article and Find Full Text PDF

Bile salts (BS) are naturally occurring steroidal biosurfactants. The ease of functionalization of BSs has boosted their use as inexpensive building blocks for the fabrication of a broad set of value-added soft functional materials. In the present work, three fluorescent bile acid (FBA) derivatives have been synthesized by conjugating anthracene at the side chain of lithocholic acid, deoxycholic acid, and cholic acid to understand the effect of the nature of the steroid nucleus on their physicochemical properties.

View Article and Find Full Text PDF

Bioinspired design of DNA in aqueous ionic liquid media for sustainable packaging of horseradish peroxidase under biotic stress.

Chem Commun (Camb)

January 2025

Institute of Plant Genetics (IPG), Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.

We show that a combination of DNA and ionic liquid significantly increases the stability and activity of HRP and achieves a 4.8-fold higher peroxidase activity than PBS buffer. Also, HRP retains 84% of its activity in IL+DNA compared to 24% in PBS against trypsin digestion.

View Article and Find Full Text PDF

Conformationally Adaptable Extractant Flexes Strong Lanthanide Reverse-Size Selectivity.

J Am Chem Soc

January 2025

Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.

Chemical selectivity is traditionally understood in the context of rigid molecular scaffolds with precisely defined local coordination and chemical environments that ultimately facilitate a given transformation of interest. By contrast, nature leverages dynamic structures and strong coupling to enable specific interactions with target species in otherwise complex media. Taking inspiration from nature, we demonstrate unconventional selectivity in the solvent extraction of light over heavy lanthanides using a conformationally flexible ligand called octadecyl acyclopa (ODA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!