AI Article Synopsis

  • The study explored how aging impacts the microstructures and properties of modified asphalt using a graphene oxide (GO) and styrene-butadiene-styrene (SBS) composite.
  • The GO/SBS composites enhanced the asphalt's high-temperature stability and aging resistance while slightly compromising low-temperature performance.
  • The addition of GO led to improved microstructural stability and helped reduce the formation of aging-related compounds, indicating that a balanced amount of GO can enhance the overall performance of asphalt.

Article Abstract

This work aimed to investigate the effects of aging on the microstructures and rheological properties of modified asphalt with a GO/SBS composite, since the styrene-butadiene-styrene block copolymer is potentially compatible with graphene oxide (GO). The GO/SBS composites, which were used as a kind of modifier, were prepared via the solution-blending method. GO/SBS composites with varying GO contents were employed to prepare the GO/SBS-compound-modified asphalt (GO/SBS-MA). Then, the GO/SBS-MA underwent PAV (pressure aging vessel) or UV (ultraviolet) aging tests to simulate different aging circumstances. The microstructures of the asphalt binders were studied using FTIR (Fourier-transform infrared spectroscopy) and AFM (atomic force microscope) tests. Moreover, DSR (dynamic shear rheometer) and BBR (bending beam rheometer) experiments were carried out to investigate the rheological properties of the GO/SBS-MA. The results showed that the addition of GO improved the high-temperature stability of the asphalt binder while slightly impairing its performance at low temperatures. GO restrained the formation of carbonyl and sulfoxide groups as well as the breakdown of C=C bonds in the polybutadiene (PB) segment, promoting the anti-aging performance of GO/SBS-MA. Furthermore, the interactions between the GO/SBS and the asphalt binder resulted in the formation of needle-like aggregates, enhancing the stability of the asphalt binder. The asphalt binders with a higher content of graphene oxide (GO) exhibited not only a better high-temperature performance, but also a better aging resistance. It was concluded that the macroscopic properties and microstructures were significantly affected by GO, and a moderate increase in the amount of GO could contribute to a better aging resistance for GO/SBS-MA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11174763PMC
http://dx.doi.org/10.3390/polym16111504DOI Listing

Publication Analysis

Top Keywords

rheological properties
12
asphalt binder
12
effects aging
8
aging microstructures
8
microstructures rheological
8
properties modified
8
asphalt
8
modified asphalt
8
asphalt go/sbs
8
go/sbs composite
8

Similar Publications

Liquid metals (LMs), i.e., metals and alloys that exist in a liquid state at room temperature, have recently attracted considerable attention owing to their electronic and rheological properties useful in various cutting-edge technologies.

View Article and Find Full Text PDF

Background: Although varieties in chewing patterns are essential for the transformation of food in mouth and thereby its sensorial perception, there are few reports that show the effect of chewing frequency on food oral processing and its properties.

Objective: The current study tested whether consciously controlled chewing frequency influences the oral processing of habitually consumed foods and their sensory analysis.

Method: Chewing behaviour was analysed during the mastication of mushed potato samples by 20 participants in two separate test sessions, in which they were instructed to chew the sample in their habitual manner (free chewing test) or follow a preprogrammed video animation displayed on a screen, wich guided them to maintain a constant chewing frequency (F-const chewing test).

View Article and Find Full Text PDF

The healing of bacteria-infected wounds has long posed a significant clinical challenge. Traditional hydrogel wound dressings often lack self-healing properties and effective antibacterial characteristics, making wound healing difficult. In this study, a bioactive small molecule cross-linking agent 4-FPBA/Lys/4-FPBA (FLF) composed of 4-formylphenylboronic acid (4-FPBA) and lysine (Lys) was utilized to cross-link guar gum (GG) and a tannic acid/iron (TA/Fe) chelate through multiple dynamic bonds, leading to the formation of a novel self-healing hydrogel dressing GG-FLF/TA/Fe.

View Article and Find Full Text PDF

Understanding the Topology Freezing Temperature of Vitrimer-Like Materials through Complementary Structural and Rheological Analyses for Phase-Separated Network.

ACS Macro Lett

January 2025

Department of Life Science and Applied Chemistry, Graduated School of Engineering, Nagoya Institute of Technology, Gokiso-cho Showa-ku, Nagoya-city, Aichi 466-8555, Japan.

Vitrimers are sustainable cross-linked polymers characterized by an associative bond exchange mechanism within their network. A well-known feature of vitrimers is the Arrhenius dependence of the viscosity or relaxation time. Another important aspect is the existence of a topology-freezing temperature (), which represents a transition between the viscoelastic solid state and the malleable viscoelastic liquid state.

View Article and Find Full Text PDF

Babesiosis in sickle cell disease (SCD) is marked by severe anemia but the underlying red blood cell (RBC) rheological parameters remain largely undefined. Here, we describe altered RBC deformability from both primary (host RBC sickle hemoglobin mediated) and secondary changes (Babesia parasite infection mediated) to the RBC membrane using wild type AA, sickle trait AS and sickle SS RBCs. Our ektacytometry (LORRCA) analysis demonstrates that the changes in the host RBC bio-mechanical properties, pre- and post- Babesia infection, reside on a spectrum of severity, with wild type infected AA cells, despite showing a significant reduction of deformability under both shear and osmolarity gradients, exhibiting only a mild phenotype; compared to infected AS RBCs which show median changes in deformability and infected SS RBCs which exhibit the most dramatic impact of infection on cellular rheology, including an increase in Point of Sickling values.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!