Silicone-modified polyurethane (PUSX) refers to the introduction of a silicone short chain into the polyurethane chain to make it have the dual properties of silicone and polyurethane (PU). It can be used in many fields, such as coatings, films, molding products, adhesives, and so on. The use of organic solvents to achieve the fiberization of silicone-modified polyurethane has been reported. However, it is challenging to achieve the fiberization of silicone-modified polyurethane based on an environmentally friendly water solvent. Herein, we report a simple and powerful strategy to fabricate environmentally friendly waterborne silicone-modified polyurethane nanofiber membranes through the addition of polyethylene glycol (PEG) with different molecular weights using electrospinning technology and in situ doping with three crosslinking agents with different functional groups (a polyoxazoline crosslinking agent, a polycarbodiimide crosslinking agent, and a polyisocyanate crosslinking agent) combined with various heating treatment conditions. The influence of PEG molecular weight on fiber formation was explored. The morphology, structure, water resistance, and mechanical properties were analyzed regarding the effect of the introduction of silicone into PU. The effects of the type and content of crosslinking agent on the morphology and physical properties of PUSX nanofiber membranes are discussed. These results show that the introduction of silicone can improve the water resistance and high temperature resistance of waterborne PU, and the addition of a crosslinking agent can further improve the water resistance of the sample, so that the sample can maintain good morphology after immersion. Crosslinking agents with different functional groups had different effects on the mechanical properties of PUSX nanofiber membranes due to different reactions. Among them, the oxazoline crosslinking agent had a significant effect on improving tensile strength, while the isocyanate crosslinking agent had a significant effect on improving the elongation at break. The PUSX nanofiber membrane prepared in this work did not use organic solvents that were harmful to humans and the environment, and it can be used in outdoor textiles, oil-water separation, medical health, and other fields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11174862PMC
http://dx.doi.org/10.3390/polym16111500DOI Listing

Publication Analysis

Top Keywords

crosslinking agent
28
silicone-modified polyurethane
20
crosslinking agents
12
introduction silicone
12
nanofiber membranes
12
water resistance
12
pusx nanofiber
12
crosslinking
10
waterborne silicone-modified
8
physical properties
8

Similar Publications

NIR photo-responsive injectable chitosan/hyaluronic acid hydrogels with controlled NO release for the treatment of MRSA infections.

Int J Biol Macromol

January 2025

Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530000, China. Electronic address:

Due to resistance to common antibiotics, methicillin-resistant Staphylococcus aureus (MRSA) infections pose a significant threat to human health. In this study, we developed an injectable, adhesive, and biocompatible hydrogel with multiple functions. Specifically, carboxymethyl chitosan (CMCS) crosslinked with hyaluronic acid (HA) forms the primary framework of the hydrogel.

View Article and Find Full Text PDF

Intratumoral delivery of Mitomycin C using bio-responsive Gellan Gum Nanogel: In-vitro evaluation and enhanced chemotherapeutic efficacy.

Int J Biol Macromol

January 2025

Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India. Electronic address:

Intratumoral drug delivery systems hold immense promise in overcoming the limitations of conventional IV chemotherapy, particularly in enhancing therapeutic efficacy and minimizing systemic side effects. In this study, we introduce a novel redox-responsive intratumoral nanogel system that combines the biocompatibility of natural polysaccharides with the tailored properties of synthetic polymers. The nanogel features a unique cross-linked architecture incorporating redox-sensitive segments, designed to leverage the elevated glutathione levels in the tumor microenvironment for controlled drug release.

View Article and Find Full Text PDF

(L.) DC., commonly known as Japanese pepper, is a deciduous shrub native to East Asia.

View Article and Find Full Text PDF

To develop and evaluate graphene oxide/gelatin/alginate scaffolds for advanced wound therapy capable of mimicking the native extracellular matrix (ECM) and bio-stimulating all specific phases of the wound healing process, from inflammation and proliferation to the remodeling of damaged skin tissue in three dimensions. The scaffolds were engineered as interpenetrating polymeric networks by the crosslinking reaction of gelatin in the presence of alginate and characterized by structural, morphological, mechanical, swelling properties, porosity, adhesion to the skin tissue, wettability, and in vitro simultaneous release of the active agents. Biocompatibility of the scaffolds were evaluated in vitro by MTT test on fibroblasts (MRC5 cells) and in vivo using assay.

View Article and Find Full Text PDF

Bio-Microcapsules of Polybutylene Succinate (PBS) and Isocyanates: Towards Sustainable, Safer, and Efficient Adhesives.

Polymers (Basel)

January 2025

CERENA-Centro de Recursos Naturais e Ambiente, Department of Chemical Engineering (DEQ), Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal.

This work describes the encapsulation of three different aliphatic isocyanates to reduce the risks associated with isocyanates' direct handling. The use of bio-based polybutylene succinate (bio-PBS) increases the sustainability factor as it allows for the use of microcapsules (MCs) from renewable sources with biodegradable features. The three different MCs (MCs-Monomer, MCs-Trimer, and MCs-Polymer) are spherical, crack-free, and matrix-type, containing an isocyanate payload between 67 wt% and 70 wt%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!