The MYB transcription factors (TFs) have substantial functions in anthocyanin synthesis as well as being widely associated with plant responses to various adversities. In the present investigation, we found an unreported MYB TF from (a wild relative of eggplant) and named it in reference to its homologous gene. Bioinformatics analysis demonstrated that the open reading frame of was 825 bp in length, encoding 275 amino acids, with a typical R2R3-MYB gene structure, and predicted subcellular localization in the nucleus. Analysis of the tissue-specific expression pattern through qRT-PCR showed that the was expressed at a high level in young stems as well as leaves of . Transgenic and tobacco plants overexpressing pertinent to the control of the 35S promoter exhibited a distinct purple color trait, suggesting a significant change in their anthocyanin content. Furthermore, we obtained three tobacco transgenic lines with significant differences in anthocyanin accumulation and analyzed the differences in anthocyanin content by LC-MS/MS. The findings demonstrated that overexpression of caused tobacco to have considerably raised levels of several anthocyanin components, with the most significant increases in delphinidin-like anthocyanins and cyanidin-like anthocyanins. The qRT-PCR findings revealed significant differences in the expression levels of structural genes for anthocyanin synthesis among various transgenic lines. In summary, this study demonstrated that the gene has a substantial impact on anthocyanin synthesis, and overexpression of the gene leads to significant modifications to the expression levels of a variety of anthocyanin-synthesizing genes, which leads to complex changes in anthocyanin content and affects plant phenotypes. This present research offers the molecular foundation for the research of the mechanism of anthocyanin formation within plants, as well as providing some reference for the improvement of traits in solanum crops.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11174649 | PMC |
http://dx.doi.org/10.3390/plants13111570 | DOI Listing |
BMC Plant Biol
January 2025
Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China.
Background: Anthocyanin is an important class of water-soluble pigments that are widely distributed in various tissues of plants, and it not only facilitates diverse color changes but also plays important roles in various biological processes. Maize silk, serving as an important reproductive organ and displaying a diverse range of colors, plays an indispensable role in biotic resistance through its possession of anthocyanin. However, the copy numbers, characteristics, and expression patterns of genes involved in maize anthocyanin biosynthesis are not fully understood.
View Article and Find Full Text PDFBMC Genom Data
January 2025
Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences/Hebei Key Laboratory of Plant Genetic Engineering, Shijiazhuang, 050000, China.
Background: Wheat seeds display different colors due to the types and contents of anthocyanins, which is closely related to anthocyanin metabolism. In this study, a transcriptomic and metabolomic analysis between white and purple color wheat pericarp aimed to explore some key genes and metabolites involved in anthocyanin metabolism.
Results: Two wheat cultivars, a white seed cultivar Shiluan02-1 and purple seed cultivar Hengzi151 were used to identify the variations in differentially expressed genes (DEGs) and differentially accumulated flavonoids (DAFs).
Hortic Res
January 2025
Institute of Food Science and Technology, Fujian Academy of Agricultural Sciences, No. 247 Wusi Road, Gulou District, Fuzhou 350003, China.
Resveratrol is an important phytoalexin that adapts to and responds to stressful conditions and plays various roles in health and medical therapies. However, it is only found in a limited number of plant species in low concentrations, which hinders its development and utilization. Chalcone synthase (CHS) and stilbene synthase (STS) catalyze the same substrates to produce flavonoids and resveratrol, respectively.
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria, RS, Brazil.
Purinergic signaling plays a major role in aging and neurodegenerative diseases, which are associated with memory decline. Blackcurrant (BC), an anthocyanin-rich berry, is renowned for its antioxidant and neuroprotective activities. However, evidence on the effects of BC on purinergic signaling is lacking.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, Zhejiang Sci-Tech University, Hangzhou, 310018, China. Electronic address:
The pigments present in the fibers of naturally colored cotton provide excellent antibacterial and environmentally friendly properties, making these colored fibers increasingly favored by the textile industry and consumers. Proanthocyanidins (PAs), the critical pigments responsible for the color of brown cotton fiber, are produced on the endoplasmic reticulum and subsequently transported to the vacuole for polymerization and/or storage. Previous studies have identified GhTT12 as a potential transmembrane transporter of PAs in Gossypium hirsutum, with GhTT12 being a homolog of Arabidopsis Transparent Testa 12 (TT12).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!