Inhibition of PIKfyve Leads to Lysosomal Disorders via Dysregulation of mTOR Signaling.

Cells

State Key Laboratory of Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China.

Published: May 2024

AI Article Synopsis

  • PIKfyve is a lipid kinase that plays a crucial role in lysosomal function, and its inhibition causes enlarged lysosomes and cytoplasmic vacuoles due to disrupted lysosomal processes.
  • Findings from PIKfyve-deficient zebrafish show that enlarged macrophages with giant vacuoles mimic symptoms of lysosomal storage disorders, and using mTOR inhibitors can partially reverse these issues and improve larval lifespan.
  • The study highlights the importance of PIKfyve in regulating mTOR signaling during development, suggesting that targeting PIKfyve could be a potential treatment for lysosomal storage disorders.

Article Abstract

PIKfyve is an endosomal lipid kinase that synthesizes phosphatidylinositol 3,5-biphosphate from phosphatidylinositol 3-phsphate. Inhibition of PIKfyve activity leads to lysosomal enlargement and cytoplasmic vacuolation, attributed to impaired lysosomal fission processes and homeostasis. However, the precise molecular mechanisms underlying these effects remain a topic of debate. In this study, we present findings from PIKfyve-deficient zebrafish embryos, revealing enlarged macrophages with giant vacuoles reminiscent of lysosomal storage disorders. Treatment with mTOR inhibitors or effective knockout of mTOR partially reverses these abnormalities and extend the lifespan of mutant larvae. Further in vivo and in vitro mechanistic investigations provide evidence that PIKfyve activity is essential for mTOR shutdown during early zebrafish development and in cells cultured under serum-deprived conditions. These findings underscore the critical role of PIKfyve activity in regulating mTOR signaling and suggest potential therapeutic applications of PIKfyve inhibitors for the treatment of lysosomal storage disorders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11171791PMC
http://dx.doi.org/10.3390/cells13110953DOI Listing

Publication Analysis

Top Keywords

pikfyve activity
12
inhibition pikfyve
8
leads lysosomal
8
mtor signaling
8
lysosomal storage
8
storage disorders
8
lysosomal
5
mtor
5
pikfyve
5
pikfyve leads
4

Similar Publications

Development of a Second-Generation, Chemical Probe for PIKfyve.

J Med Chem

January 2025

Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.

We optimized our highly potent and cell-active chemical probe for phosphatidylinositol-3-phosphate 5-kinase (PIKfyve), SGC-PIKFYVE-1, resulting in compounds with improved potency and demonstrated stability. Use of an in-cell, kinome-wide selectivity panel allowed for confirmation of excellent in-cell selectivity of our lead compound, , and another promising analogue, . Evaluation of the pharmacokinetic (PK) profiles of these two compounds revealed that both are well tolerated systemically and orally bioavailable.

View Article and Find Full Text PDF

T helper 17 (Th17) cells are effector cells that mediate inflammatory responses to bacterial and fungal pathogens. While the cytokine signaling inputs required to generate Th17s are established, less is known about intracellular pathways that drive Th17 differentiation. Our previously published phosphoproteomic screen identifies that PIKFYVE, a lipid kinase that generates the phosphatidylinositol PtdIns(3,5)P2, is activated during Th17 differentiation.

View Article and Find Full Text PDF

PIKfyve (1-phosphatidylinositol 3-phosphate 5-kinase), a lipid kinase, plays an important role in generating phosphatidylinositol (3,5)-bisphosphate (PI(3,5)P). SGC-PIKFYVE-1, a potent and selective inhibitor of PIKfyve, has been used as a chemical probe to explore pathways dependent on PIKfyve activity. Based on reported changes in membrane dynamics and ion transport in response to PIKfyve inhibition, we hypothesized that pharmacological inhibition of PIKfyve could modulate pain.

View Article and Find Full Text PDF

AMPK protects proximal tubular epithelial cells from lysosomal dysfunction and dedifferentiation induced by lipotoxicity.

Autophagy

December 2024

Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium.

Renal proximal tubules are a primary site of injury in metabolic diseases. In obese patients and animal models, proximal tubular epithelial cells (PTECs) display dysregulated lipid metabolism, organelle dysfunctions, and oxidative stress that contribute to interstitial inflammation, fibrosis and ultimately end-stage renal failure. Our research group previously pointed out AMP-activated protein kinase (AMPK) decline as a driver of obesity-induced renal disease.

View Article and Find Full Text PDF

The intricate regulatory mechanisms governing adipocyte differentiation are pivotal in elucidating the complex pathophysiology underlying obesity. This study aims to explore the dynamic changes in gene expression during the differentiation of 3T3-L1 adipocytes using transcriptomics methods. Protopanaxatriol (PPT) significantly inhibited adipocyte differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!