The bone marrow (BM) stromal cell microenvironment contains non-hematopoietic stromal cells called mesenchymal stromal cells (MSCs). MSCs are plastic adherent, form CFU-Fs, and give rise to osteogenic, adipogenic, chondrogenic progenitors, and most importantly provide HSC niche factor chemokine C-X-C motif ligand 12 (CXCL12) and stem cell factor (SCF). Different authors have defined different markers for mouse MSC identification like PDGFRSca-1 subsets, Nestin, or LepR cells. Of these, the LepR cells are the major source of SCF and CXCL12 in the BM microenvironment and play a major role in HSC maintenance and hematopoiesis. LepR cells give rise to most of the bones and BM adipocytes, further regulating the microenvironment. In adult BM, LepR cells are quiescent but after fracture or irradiation, they proliferate and differentiate into mesenchymal lineage osteogenic, adipogenic and/or chondrogenic cells. They also play a crucial role in the steady-state hematopoiesis process, as well as hematopoietic regeneration and the homing of hematopoietic stem cells (HSCs) after myeloablative injury and/or HSC transplantation. They line the sinusoidal cavities, maintain the trabeculae formation, and provide the space for HSC homing and retention. However, the LepR cell subset is heterogeneous; some subsets have higher adipogenic potential, while others express osteollineage-biased genes. Different transcription factors like Early B cell factor 3 (EBF3) or RunX2 help maintain this balance between the self-renewing and committed states, whether osteogenic or adipogenic. The study of LepR MSCs holds immense promise for advancing our understanding of HSC biology, tissue regeneration, metabolic disorders, and immune responses. In this review, we will discuss the origin of the BM resident LepR cells, different subtypes, and the role of LepR cells in maintaining hematopoiesis, osteogenesis, and BM adipogenesis following their multifaceted impact.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11171870 | PMC |
http://dx.doi.org/10.3390/cells13110910 | DOI Listing |
Bone Res
January 2025
National Institute of Biological Sciences, Beijing (NIBS), 102206, Beijing, China.
Tissue clearing combined with high-resolution confocal imaging is a cutting-edge approach for dissecting the three-dimensional (3D) architecture of tissues and deciphering cellular spatial interactions under physiological and pathological conditions. Deciphering the spatial interaction of leptin receptor-expressing (LepR) stromal cells with other compartments in the bone marrow is crucial for a deeper understanding of the stem cell niche and the skeletal tissue. In this study, we introduce an optimized protocol for the 3D analysis of skeletal tissues, enabling the visualization of hematopoietic and stromal cells, especially LepR stromal cells, within optically cleared bone hemisections.
View Article and Find Full Text PDFNat Commun
January 2025
Center for Research Informatics, The University of Chicago, Chicago, IL, USA.
The fallopian tube undergoes extensive molecular changes during the menstrual cycle and menopause. We use single-cell RNA and ATAC sequencing to construct a comprehensive cell atlas of healthy human fallopian tubes during the menstrual cycle and menopause. Our scRNA-seq comparison of 85,107 pre- and 46,111 post-menopausal fallopian tube cells reveals substantial shifts in cell type frequencies, gene expression, transcription factor activity, and cell-to-cell communications during menopause and menstrual cycle.
View Article and Find Full Text PDFOral Dis
January 2025
State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
Objective: LepR-expressing cells (LepR cells), a critical subpopulation of mesenchymal stem cells, have gained increasing attention in the last decade. LepR cells have been found to play a crucial role in maintaining bone and periodontal homeostasis. This review summarizes current research advances focusing on the role of LepR cells and their underlying regulatory molecular mechanisms in bones and periodontium, aiming to provide a better understanding of the therapeutic potential of this cell lineage.
View Article and Find Full Text PDFJ Cell Mol Med
December 2024
Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.
Macrophage efferocytosis (clearance of apoptotic cells) is crucial for tissue homeostasis and wound repair, where macrophages secrete factors that promote resolution of inflammation and regenerative signalling. This study examined the role of efferocytic macrophage-associated CCL2 secretion, its influence on mesenchymal stem/progenitor cell (MSPC) chemotaxis, and in vivo cell recruitment using Ccr2 (KO) mice with disrupted CCL2 receptor signalling in two regenerative models: ossicle implants and ulnar stress fractures. Single cell RNA sequencing and PCR validation indicated that efferocytosis of various apoptotic cells at bone injury sites (osteoblasts, pre-osteoblasts, MSPC) upregulated CCL2.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
December 2024
College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, China. Electronic address:
Hypoxia disrupts multiple physiological processes, including metabolism, immunity, and reproduction in teleosts. The brain plays a critical role in adapting to environmental changes, regulating the endocrine system, and controlling reproduction. The present study investigated the sex-specific cerebral responses to chronic hypoxia through an integrated analysis of the transcriptome, proteome, and metabolome of yellow catfish.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!