Background: Volatile compounds are key elements in the interaction and communication between organisms at both interspecific and intraspecific levels. In complex bacterial communities, the emission of these fast-acting chemical messengers allows an exchange of information even at a certain distance that can cause different types of responses in the receiving organisms. The changes in secondary metabolism as a consequence of this interaction arouse great interest in the field of searching for bioactive compounds since they can be used as a tool to activate silenced metabolic pathways. Regarding the great metabolic potential that the Actinobacteria group presents in the production of compounds with attractive properties, we evaluated the reply the emitted volatile compounds can generate in other individuals of the same group.

Results: We recently reported that volatile compounds released by different streptomycete species trigger the modulation of biosynthetic gene clusters in Streptomyces spp. which finally leads to the activation/repression of the production of secondary metabolites in the recipient strains. Here we present the application of this rationale in a broader bacterial community to evaluate volatiles as signaling effectors that drive the activation of biosynthesis of bioactive compounds in other members of the Actinobacteria group. Using cocultures of different actinobacteria (where only the volatile compounds reach the recipient strain) we were able to modify the bacterial secondary metabolism that drives overproduction (e.g., granaticins, actiphenol, chromomycins) and/or de novo production (e.g., collismycins, skyllamycins, cosmomycins) of compounds belonging to different chemical species that present important biological activities.

Conclusions: This work shows how the secondary metabolism of different Actinobacteria species can vary significantly when exposed in co-culture to the volatile compounds of other phylum-shared bacteria, these effects being variable depending on strains and culture media. This approach can be applied to the field of new drug discovery to increase the battery of bioactive compounds produced by bacteria that can potentially be used in treatments for humans and animals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11186294PMC
http://dx.doi.org/10.1186/s12934-024-02456-4DOI Listing

Publication Analysis

Top Keywords

volatile compounds
20
secondary metabolism
16
bioactive compounds
12
compounds
10
actinobacteria group
8
volatile
6
actinobacteria
5
secondary
5
volatile communication
4
communication actinobacteria
4

Similar Publications

Male tephritid fruit flies typically emit pheromones from rectal glands to attract mates. Consistent with this, virgin females of the cucumber fruit fly, Zeugodacus cucumis (French), were found to be attracted to volatiles emitted by crushed male rectal glands in Y-tube olfactometer bioassays. Electrophysiological studies identified several male rectal gland compounds that triggered responses in female antennae.

View Article and Find Full Text PDF

Soil cadmium pollution elicits sex-specific plant volatile emissions in response to insect herbivory in eastern cottonwood Populus deltoides.

Plant Physiol Biochem

December 2024

Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, Sichuan Zoige Alpine Wetland Ecosystem National Observation and Research Station, College of Life Sciences, Sichuan University, Chengdu, 610041, Sichuan, China. Electronic address:

Soil heavy metal pollution is a major abiotic stressor frequently encountered by plants in conjunction with other biotic stresses like insect herbivory. Yet, it remains largely unexplored how soil metal pollution and insect herbivory act together to influence emissions of plant volatile organic compounds (VOCs), which mediate multiple ecological functions and play crucial roles in atmospheric processes. Here, we assessed the individual and combined effects of soil cadium (Cd) pollution and insect herbivory by Clostera anachoreta on VOC emissions from the seedlings of eastern cottonwood Populus deltoides, and whether these effects depend on plant sex.

View Article and Find Full Text PDF

This study investigates the phenolic compounds (PC), volatile compounds (VC), and fatty acids (FA) of extra virgin olive oil (EVOO) derived from the Turkish olive variety "Sarı Ulak", along with ADMET, DFT, molecular docking, and gene network analyses of significant molecules identified within the EVOO. Chromatographic methods (GC-FID, HPLC) were employed to characterize FA, PC, and VC profiles, while quality parameters, antioxidant activities (TAC, ABTS, DPPH) were assessed via spectrophotometry. The analysis revealed a complex composition of 40 volatile compounds, with estragole, 7-hydroxyheptene-1, and 3-methoxycinnamaldehyde as the primary components.

View Article and Find Full Text PDF

Microbial volatile organic compounds measured in the air of a waste sorting plant and a university by thermal desorption-gas chromatography-tandem mass spectrometry.

Environ Monit Assess

January 2025

Institut de Recherche Robert-Sauvé en Santé Et en Sécurité du Travail (IRSST), Montréal, Québec, Canada.

In recyclable waste management facilities, several contaminants, mainly bioaerosols and microorganisms, can be released and cause potential adverse health effects. Given that microbial volatile organic compounds (mVOCs) are metabolites developed by molds and since they can be considered as potential biomarkers of mold exposure, their concentrations in ambient air were monitored at a recyclable waste sorting plant (WSP) and a university campus (UC) serving as control environment for comparison. A recently developed analytical method was used for the detection of 21 selected mVOCs in real conditions.

View Article and Find Full Text PDF

This research presents a systematic review of the application of metal-organic frameworks (MOFs) to detect volatile organic compounds (VOCs). VOCs, compounds with high vapor pressure at ambient temperature and normal pressure, are widely present in a variety of industrial and living environments. VOCs are not only hazardous to the environment but also have a severe impact on human health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!