Background: Identification of driver mutations and development of targeted therapies has considerably improved outcomes for lung cancer patients. However, significant limitations remain with the lack of identified drivers in a large subset of patients. Here, we aimed to assess the genomic landscape of lung adenocarcinomas (LUADs) from individuals without a history of tobacco use to reveal new genetic drivers of lung cancer.
Methods: Integrative genomic analyses combining whole-exome sequencing, copy number, and mutational information for 83 LUAD tumors was performed and validated using external datasets to identify genetic variants with a predicted functional consequence and assess association with clinical outcomes. LUAD cell lines with alteration of identified candidates were used to functionally characterize tumor suppressive potential using a conditional expression system both in vitro and in vivo.
Results: We identified 21 genes with evidence of positive selection, including 12 novel candidates that have yet to be characterized in LUAD. In particular, SNF2 Histone Linker PHD RING Helicase (SHPRH) was identified due to its frequency of biallelic disruption and location within the familial susceptibility locus on chromosome arm 6q. We found that low SHPRH mRNA expression is associated with poor survival outcomes in LUAD patients. Furthermore, we showed that re-expression of SHPRH in LUAD cell lines with inactivating alterations for SHPRH reduces their in vitro colony formation and tumor burden in vivo. Finally, we explored the biological pathways associated SHPRH inactivation and found an association with the tolerance of LUAD cells to DNA damage.
Conclusions: These data suggest that SHPRH is a tumor suppressor gene in LUAD, whereby its expression is associated with more favorable patient outcomes, reduced tumor and mutational burden, and may serve as a predictor of response to DNA damage. Thus, further exploration into the role of SHPRH in LUAD development may make it a valuable biomarker for predicting LUAD risk and prognosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11300780 | PMC |
http://dx.doi.org/10.1038/s41416-024-02755-y | DOI Listing |
Biochem Genet
January 2025
Department of Cardiac Function, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, Hubei, China.
Lung adenocarcinoma (LUAD) is characterized by its aggressive nature and resistance to treatment. FAM107A is a tumor suppressor gene that has been found to possess inhibitory effects in several cancers, but its role in LUAD remains unclear. This study investigated the role of FAM107A in regulating LUAD cell growth, invasion and aerobic glycolysis and also investigated the potential underlying mechanisms.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Clinical Laboratory, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China.
Our aim was to investigate the potential value of immune-related miRNA signaling in predicting clinical prognosis and immunotherapy. We first identified immune-related miRNAs in lung adenocarcinoma (LUAD), and then constructed a miRNA-based risk model by lasso regression modeling. Finally, we validated our findings using RT-qPCR in serum from LUAD patients and normal patients.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Thoracic Surgery, Affiliated Hospital of Chengde Medical College, Chengde, 067000, Hebei, China.
DCUN1D5 is up-regulated and promotes tumor progression in many cancers such as laryngeal squamous cell carcinoma and breast cancer, but the expression of DCUN1D5 in lung adenocarcinoma and its molecular mechanism are not clear. The differences of DCUN1D5 expression between lung adenocarcinoma and normal tissues were compared by TCGA, GEO and UALCAN databases, and the relationship between DCUN1D5 expression and clinicopathological features of patients was analyzed. The diagnostic and prognostic value of DCUN1D5 in patients with LUAD was analyzed by TCGA, GEPIA and Kaplan-Meier Plotter database.
View Article and Find Full Text PDFFront Med (Lausanne)
December 2024
Department of Rheumatology and Immunology, The Affiliated Huai'an Hospital of Xuzhou Medical University, The Second People's Hospital of Huai'an, Huai'an, China.
The risk of lung cancer is significantly increased in patients with systemic sclerosis (SSc), yet the specific genes underlying this association remain unexplored. Our study aims to identify genes shared by SSc and lung cancer. We identified differentially expressed genes (DEGs) from SSc and lung adenocarcinoma (LUAD) datasets (SSc: GSE95065, LUAD: GSE136043) in the GEO database.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pathology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!