Artificial control of intracellular protein dynamics with high precision provides deep insight into complicated biomolecular networks. Optogenetics and caged compound-based chemically induced dimerization (CID) systems are emerging as tools for spatiotemporally regulating intracellular protein dynamics. However, both technologies face several challenges for accurate control such as the duration of activation, deactivation rate and repetition cycles. Herein, we report a photochromic CID system that uses the photoisomerization of a ligand so that both association and dissociation are controlled by light, enabling quick, repetitive and quantitative regulation of the target protein localization upon illumination with violet and green light. We also demonstrate the usability of the photochromic CID system as a potential tool to finely manipulate intracellular protein dynamics during multicolor fluorescence imaging to study diverse cellular processes. We use this system to manipulate PTEN-induced kinase 1 (PINK1)-Parkin-mediated mitophagy, showing that PINK1 recruitment to the mitochondria can promote Parkin recruitment to proceed with mitophagy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41589-024-01654-w | DOI Listing |
Cell Transplant
January 2025
Cells Good (Xiamen) Inc. Huli, Xiamen Torch Development Zone, Fujian, China.
Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal. They play a critical role in cell therapy due to their powerful immunomodulatory and regenerative effects. Recent studies suggest that one of the key therapeutic mechanisms of MSCs seems to derive from their paracrine product, called extracellular vesicles (EVs).
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
January 2025
Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Provincial Key Laboratory for Ophthalmology, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, China.
Purpose: This study aimed to investigate the role of SIRT4 in retinal protection, specifically its ability to mitigate excitotoxic damage to Müller glial cells through the regulation of mitochondrial dynamics and glutamate transporters (GLASTs).
Methods: A model of retinal excitatory neurotoxicity was established in mice. Proteins related to mitochondrial dynamics, GLAST, and SIRT4 were analyzed on days 0, 1, 3, and 5 following toxic injury.
mSphere
January 2025
School of Medicine, Southern University of Science and Technology, Shenzhen, China.
The universal bacterial second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) plays critical roles in regulating a variety of bacterial functions such as biofilm formation and virulence. The metabolism of c-di-GMP is inversely controlled by diguanylate cyclases (DGCs) and phosphodiesterases (PDEs). Recently, increasing studies suggested that the protein-protein interactions between DGCs/PDEs and their partners appear to be a common way to achieve specific regulation.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Division of Molecular & Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan.
Background/purpose: Dual-cure resin-cements are used for various dental restorations. However, whether the curing modes of these resin-cements influence gingival inflammation remains unclear. Hence, herein, we evaluated the effects of dual-cure resin-cement curing modes on gingival cytotoxicity and inflammatory responses.
View Article and Find Full Text PDFJ Dent Sci
January 2025
Department of Periodontology, Nihon University School of Dentistry, Tokyo, Japan.
Background/purpose: Peri-implantitis remains a substantial challenge. This study investigated the effect of titanium particles on human oral epithelial cells, focusing on the nucleotide-binding domain and leucine-rich repeat protein (NLRP) 3 inflammasome.
Materials And Methods: The Ca9-22 human gingival epithelial cell line was subjected to incubation with titanium particles.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!