Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Globally, tea production and its quality fundamentally depend on tea leaves, which are susceptible to invasion by pathogenic organisms. Precise and early-stage identification of plant foliage diseases is a key element in preventing and controlling the spreading of diseases that hinder yield and quality. Image processing techniques are a sophisticated tool that is rapidly gaining traction in the agricultural sector for the detection of a wide range of diseases with excellent accuracy. This study focuses on a pragmatic approach for automatically detecting selected tea foliage diseases based on convolutional neural network (CNN). A large dataset of 3330 images has been created by collecting samples from different regions of Sylhet division, the tea capital of Bangladesh. The proposed CNN model is developed based on tea leaves affected by red rust, brown blight, grey blight, and healthy leaves. Afterward, the model's prediction was validated with laboratory tests that included microbial culture media and microscopic analysis. The accuracy of this model was found to be 96.65%. Chiefly, the proposed model was developed in the context of the Bangladesh tea industry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11189472 | PMC |
http://dx.doi.org/10.1038/s41598-024-62058-3 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!