Background And Purpose: Intracranial vessel wall imaging is technically challenging to implement, given the simultaneous requirements of high spatial resolution, excellent blood and CSF signal suppression, and clinically acceptable gradient times. Herein, we present our preliminary findings on the evaluation of a deep learning-optimized sequence using T1-weighted imaging.

Materials And Methods: Clinical and optimized deep learning-based image reconstruction T1 3D Sampling Perfection with Application optimized Contrast using different flip angle Evolution (SPACE) were evaluated, comparing noncontrast sequences in 10 healthy controls and postcontrast sequences in 5 consecutive patients. Images were reviewed on a Likert-like scale by 4 fellowship-trained neuroradiologists. Scores (range, 1-4) were separately assigned for 11 vessel segments in terms of vessel wall and lumen delineation. Additionally, images were evaluated in terms of overall background noise, image sharpness, and homogeneous CSF signal. Segment-wise scores were compared using paired samples tests.

Results: The scan time for the clinical and deep learning-based image reconstruction sequences were 7:26 minutes and 5:23 minutes respectively. Deep learning-based image reconstruction images showed consistently higher wall signal and lumen visualization scores, with the differences being statistically significant in most vessel segments on both pre- and postcontrast images. Deep learning-based image reconstruction had lower background noise, higher image sharpness, and uniform CSF signal. Depiction of intracranial pathologies was better or similar on the deep learning-based image reconstruction.

Conclusions: Our preliminary findings suggest that deep learning-based image reconstruction-optimized intracranial vessel wall imaging sequences may be helpful in achieving shorter gradient times with improved vessel wall visualization and overall image quality. These improvements may help with wider adoption of intracranial vessel wall imaging in clinical practice and should be further validated on a larger cohort.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11543076PMC
http://dx.doi.org/10.3174/ajnr.A8382DOI Listing

Publication Analysis

Top Keywords

deep learning-based
28
vessel wall
24
learning-based image
24
wall imaging
16
image reconstruction
16
intracranial vessel
12
csf signal
12
image
10
deep
8
vessel
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!