Surgical site infection (SSI) significantly affects patient recovery time, health outcomes and quality of life which is closely associated with the use of implants or mesh. Sutures are the most frequently used implants that play a significant role in the development of SSI. Studies have demonstrated that the administration of effective bactericidal and anti-inflammatory treatments can significantly decrease the incidence of SSI. To address this concern, a versatile suture was engineered by coating MoO nanodots in this study. The incorporation of MoO nanodots endowed the suture with desirable antibacterial and anti-inflammatory properties that were evaluated in in vitro and in vivo experiments. The results showed its remarkable ability to facilitate wound healing and prevent SSI through its dual action of combating bacterial infection and reducing inflammation. These findings highlight the promising potential of this multifunctional surgical suture as a versatile tool to promote better outcomes in surgical procedures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nano.2024.102757 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!