Coastal zones are biodiversity hotspots and deliver essential ecosystem functions and services, yet they are exposed to multiple and interacting anthropogenic and environmental constraints. The individual and cumulative effects of these constraints on benthic communities, a key component of coastal ecosystems, and their variability across space and time, remains to be thoroughly quantified to guide conservation actions. Here, we explored how the presence of biogenic habitats influences the response of benthic communities to natural and anthropogenic constraints. We investigated this effect in both intertidal and subtidal habitats exposed to different pressures. We used data collected in the North-East Atlantic over 15 years (2005-2019) as part of the REBENT monitoring program, covering 38 sites of bare sediments, intertidal seagrass beds and maerl beds. We collected a range of environmental variables and proxies of anthropogenic pressures and used variation and hierarchical partitioning with redundancy analyses to estimate their relative effect on macrobenthic communities. We used descriptors modeling spatial and temporal structures (dbMEMs) to explore the scale of their effects and potential missing predictors. The selected variables explained between 53 % and 64 % of macrobenthic β diversity depending on habitat and depth. Fishing pressures, sedimentary and hydrodynamics variables stood out as the most important predictors across all habitats while proxies of anthropogenic pressures were overall more important in intertidal habitats. In the intertidal, presence of biogenic habitat strongly modulated the amount of explained variance and the identity of the selected variable. Across both tidal levels, analysis of models' residuals further indicated that biogenic habitats might mitigate the effect of extreme environmental events. Our study provides a hierarchy of the most important drivers of benthic communities across different habitats and tidal levels, emphasizing the prominence of anthropogenic pressures on intertidal communities and the role of biogenic habitats in mitigating environmental changes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.173919DOI Listing

Publication Analysis

Top Keywords

benthic communities
12
biogenic habitats
12
anthropogenic pressures
12
space time
8
macrobenthic diversity
8
habitats
8
presence biogenic
8
proxies anthropogenic
8
pressures intertidal
8
tidal levels
8

Similar Publications

Coastal eutrophication transforms shallow micro-benthic reef communities.

Sci Total Environ

January 2025

Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, the Netherlands; IBED, University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam, the Netherlands.

Article Synopsis
  • Coral reefs worldwide are suffering from coastal eutrophication, leading to decreased coral cover and increased harmful organisms like algae and invertebrates.
  • The study focuses on how micro-benthic communities, specifically foraminifera, diatoms, and bacteria, are influenced by turbidity associated with eutrophication in the Spermonde Archipelago, using environmental DNA analysis.
  • Findings indicate that shallower reef flat communities are much more affected by turbidity than deeper reef slope communities, with foraminifera and diatom ESVs serving as indicators of varying turbidity levels, thus highlighting the influence of local environmental conditions on these micro-benthic communities.
View Article and Find Full Text PDF

Isotopic variability of the invasive blue crab Callinectes sapidus in the Gulf of Cadiz: Impacts and implications for coastal ecosystem management.

J Environ Manage

January 2025

Department of Ecology and Coastal Management, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Avda. República Saharaui, 2, Puerto Real, Cadiz, 11510, Spain; Associate Research Unit "Blue Growth", Spanish National Research Council (CSIC) - Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Cadiz, Spain. Electronic address:

The variability in trophic position and carbon isotopic signatures can provide information about their dietary flexibility and its ability to adapt to changing environmental conditions. The impact of the invasive blue crab Callinectes sapidus was assessed by estimating its trophic position and isotopic niche using stable isotopes (δ³C, δ⁵N, δ³⁴S) across different invaded Atlantic coastal areas. This study, the first of its kind in the eastern Atlantic range, reveals the crab's omnivorous behavior with a wide trophic position (TP = 2-4), consistent with findings from its native range.

View Article and Find Full Text PDF

Bio-concentration of hazardous metals in migrant shorebirds in a key conservation reserve and adjoining areas on the west coast of India.

Ecotoxicol Environ Saf

January 2025

Department of Biology, United Arab Emirates University, Al Ain 15551, United Arab Emirates; Department of Science, The Natural History Museum, Cromwell Road, South Kensington, London SW7 5BD, UK. Electronic address:

Heavy metal pollution is a growing environmental concern as it causes the degradation of wetlands by affecting the organisms at different trophic levels. Shorebirds typically feed on benthic invertebrates including polychaete worms, crustaceans and molluscs. Thus, the assessment of bioconcentration of heavy metals in shorebirds provides an insight into the extent of bioaccumulation of these hazardous metals in the upper trophic levels.

View Article and Find Full Text PDF

Sponges are key ecosystem engineers that shape, structure and enhance the biodiversity of marine benthic communities globally. Sponge aggregations and reefs are recognized as vulnerable marine ecosystems (or VMEs) due to their susceptibility to damage from bottom-contact fishing gears. Ensuring their long-term sustainability, preservation, and ecosystem functions requires the implementation of sound scientific conservation tools.

View Article and Find Full Text PDF

Quantifying microplastics concentration of invertebrates from three Antarctic fjords.

Mar Pollut Bull

January 2025

University of West Florida, 11000 University Parkway, Pensacola, FL 32514, United States of America. Electronic address:

Microplastics, small pieces of plastic measuring less than five millimeters, have spread to all ecosystems, even those in the Southern Ocean around Antarctica. In particular, microplastics have been found contaminating water in emerging fjords, or inlets created by deglaciation, along the Antarctic Peninsula. Microplastics contamination puts fjord communities, which are unique and dominated by benthic species, at high risk for microplastic exposure leading to issues with feeding, endocrine disruption, and exposure to adsorbed toxins, all of which lower fecundity and survivability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!