Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Due to the urgent need for detecting trace amounts of 3,3',4,4'-tetrachlorobiphenyl (PCB77) in the environment, we have developed an efficient and visible-driven photoelectrochemical (PEC) sensing platform based on carbon quantum dots (CQDs) modified titanium dioxide nanorods (TiO NRs), coupling with exonuclease I (Exo I) assisted in target recycling for significant signal amplification. CQDs/TiO NRs with high visible-light absorption ability and electron-hole separation efficiency is used as photoactive substrate for anchoring anti-PCB77 aptamer and its complementary DNA (cDNA). With the addition of PCB77, the specific interaction between PCB77 and its aptamer forces aptamer to separate from the electrode surface, resulting in an increase in photocurrent density. Adding Exo I in the test system, a self-catalytic target cycle was motivated, which significantly increased the PEC signal by more than twice, achieving signal amplification. The relationship between the photocurrent density changes and the concentrations of PCB77 are utilized to achieve quantitative detection of PCB77. The designed PEC sensing platform has good analytical performance with a detection limit as low as 0.33 pg L, high selectivity and stability. Moreover, the PEC sensor is successfully used to evaluate the content of PBC77 in the environment samples. The established sensing platform provides a simple and efficient method for detecting trace amounts of PCB77 in the environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.173982 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!