A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Sub-lethal effects of metal(loid) contamination on the halophyte Sarcocornia quinqueflora with links to plant photosynthetic performance and biomass - A field study. | LitMetric

Sub-lethal effects of metal(loid) contamination on the halophyte Sarcocornia quinqueflora with links to plant photosynthetic performance and biomass - A field study.

Mar Pollut Bull

School of Environmental and Life Sciences, The University of Newcastle, Callaghan, New South Wales, 2308, Australia. Electronic address:

Published: August 2024

Two saltmarsh locations within Lake Macquarie, NSW, Australia were selected to investigate the uptake and partitioning of metal(loid)s Cu, Zn, As, Se, Cd and Pb in the Australian saltmarsh halophyte, Sarcocornia quinqueflora and the associated sub-lethal effects of metal(loid)s on plant health, including photosynthetic performance, biomass, and productivity. Metal(loid)s primarily accumulated to roots (BCF > 1). Barriers to transport were observed at the root to non-photosynthetic stem transition (TF < 1) for all metal(loid)s, suggesting this species is suitable for phytostabilisation. Sediment and plant tissue metal(loid) concentrations were significantly correlated with photosynthetic performance and plant biomass. As such, the action of sediment and tissue metal(loid)s on photosynthetic performance and the subsequent effect on biomass of S.quinqueflora appear to be suitable targets for molecular analyses to further elucidate mechanisms responsible for the observed adverse effects and the development of adverse outcome pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marpolbul.2024.116569DOI Listing

Publication Analysis

Top Keywords

sub-lethal effects
8
halophyte sarcocornia
8
sarcocornia quinqueflora
8
photosynthetic performance
8
performance biomass
8
effects metalloid
4
metalloid contamination
4
contamination halophyte
4
quinqueflora links
4
links plant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!