Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: The emergence of digital whole slide image (WSI) has driven the development of computational pathology. However, obtaining patch-level annotations is challenging and time-consuming due to the high resolution of WSI, which limits the applicability of fully supervised methods. We aim to address the challenges related to patch-level annotations.
Methods: We propose a universal framework for weakly supervised WSI analysis based on Multiple Instance Learning (MIL). To achieve effective aggregation of instance features, we design a feature aggregation module from multiple dimensions by considering feature distribution, instances correlation and instance-level evaluation. First, we implement instance-level standardization layer and deep projection unit to improve the separation of instances in the feature space. Then, a self-attention mechanism is employed to explore dependencies between instances. Additionally, an instance-level pseudo-label evaluation method is introduced to enhance the available information during the weak supervision process. Finally, a bag-level classifier is used to obtain preliminary WSI classification results. To achieve even more accurate WSI label predictions, we have designed a key instance selection module that strengthens the learning of local features for instances. Combining the results from both modules leads to an improvement in WSI prediction accuracy.
Results: Experiments conducted on Camelyon16, TCGA-NSCLC, SICAPv2, PANDA and classical MIL benchmark datasets demonstrate that our proposed method achieves a competitive performance compared to some recent methods, with maximum improvement of 14.6 % in terms of classification accuracy.
Conclusion: Our method can improve the classification accuracy of whole slide images in a weakly supervised way, and more accurately detect lesion areas.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2024.108714 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!