Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The conventional direct absorption spectroscopy (DAS) technique has been plagued by the difficulty of obtaining accurate baseline, which is caused by photoelectric drift and the absence of non-absorbing regions in the transmitted light intensity signal. An inverse fitting direct absorption spectroscopy (IF-DAS) technique has been proposed to address this difficulty. The technique leverages the intrinsic nonlinear intensity response of tunable lasers to achieve baseline-free concentration measurements. It offers the advantages of being straightforward to implement, baseline-free, calibration-free, and resistant to photoelectric signal drift. Its efficacy was validated using an example under ambient temperature and atmospheric pressure conditions. The performance of the IF-DAS technique was compared with that of the conventional DAS technique through standard experimental tests. The results demonstrate that the IF-DAS technique is less susceptible to fluctuations in light intensity, exhibits superior linearity and accuracy, with an R value of 0.99986 and an overall error of less than 2%. This technique shows potential for application in harsh scenarios such as reactive flow fields and long-term engineering applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2024.124660 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!