Biotic-abiotic hybrid systems have recently emerged as a potential technique for stable and efficient removal of persistent contaminants due to coupling of microbial catabolic with abiotic adsorption/redox processes. In this study, Burkholderia vietnamensis C09V (B.V.C09V) was successfully integrated with a Zeolitic Imidazolate Framework-8 (ZIF-8) to construct a state-of-art biotic-abiotic system using polyvinyl alcohol/ sodium alginate (PVA/SA) as media. The biotic-abiotic system (PVA/SA-ZIF-8 @B.V.C09V) was able to remove 99.0 % of 2,4-DCP within 168 h, which was much higher than either PVA/SA, PVA/SA-ZIF-8 or PVA/SA@B.V.C09V (53.8 %, 72.6 % and 67.2 %, respectively). Electrochemical techniques demonstrated that the carrier effect of PVA/SA and the driving effect of ZIF-8 collectively accelerated electron transfer processes associated with enzymatic reactions. In addition, quantitative-PCR (Q-PCR) revealed that ZIF-8 stimulated B.V.C09V to up-regulate expression of tfdB, tfdC, catA, and catC genes (2.40-, 1.68-, 1.58-, and 1.23-fold, respectively), which encoded the metabolism of related enzymes. Furthermore, the effect of key physical, chemical, and biological properties of PVA/SA-ZIF-8 @B.V.C09V on 2,4-DCP removal were statistically investigated by Spearman correlation analysis to identify the key factors that promoted synergistic removal of 2,4-DCP. Overall, this study has created an innovative new strategy for the sustainable remediation of 2,4-DCP in aquatic environments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.134936 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!