Perovskite oxides and organic-inorganic halide perovskite materials, with numerous fascinating features, have been subjected to extensive studies. Most of the properties of perovskite materials are dependence on their ferroelectricity that denoted by remanent polarization (P). Thus, the increase of P in perovskite films is mainly an effort in material physics. At present, commonplace improvement schemes, i.e., controlling material crystallinity, and post-annealing by using a high-temperature process, are normally used. However, a simpler and temporal strategy for P improvement is always unavailable to perovskite material researchers. In this study, an organic coating layer, low-temperature, and vacuum-free strategy is proposed to improve the P, directly increasing the P from 36 to 56 µC cm. Further study finds that the increased P originates from the suppression of the oxygen defects and Ti defects. This organic coating layer strategy for passivating the defects may open a new way for the preparation of higher-performance and cost-effective perovskite products, further improving its prospective for application in the electron devices field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336970 | PMC |
http://dx.doi.org/10.1002/advs.202400174 | DOI Listing |
Small
January 2025
Department of Materials Science and Engineering, and Center for Functional Photonics (CFP), City University of Hong Kong, Hong Kong SAR, 999077, P. R. China.
Metal halide perovskite nanoplatelets (NPls) possess ultra-narrow photoluminescence (PL) bands tunable over the entire visible spectral range, which makes them promising for utilization in light-emitting diodes (LEDs) with spectrally pure emission colors. This calls for development of synthetic methods toward perovskite NPls with a high degree of control over both their thickness and lateral dimensions. A general strategy is developed to obtain such monodisperse CsPbI NPls through the control over the halide-to-lead ratio during heating-up reaction.
View Article and Find Full Text PDFChemSusChem
January 2025
South China Agricultural University, College of Materials and Energy, 483 Wushan Road, 510642, Guangzhou, CHINA.
Hole transport layer (HTL)-free carbon-based perovskite solar cells (C-PSCs) own outstanding potential for commercial applications due to their attractive advantages of low cost and superior stability. However, the abundant defects and mismatched energy levels at the interface of the perovskite/carbon electrode severely limit the device efficiency and stability. Constructing a 2D layer on the surface of 3D perovskite films to form 2D/3D heterojunctions has been demonstrated to be an effective method of passivating surface defects and optimizing the energy level alignment in almost all kinds of PSCs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
The power conversion efficiency (PCE) of perovskite solar cells is sensitive to their method of fabrication as well as the combination of materials in the perovskite layer. Air knife-assisted blade coating enables good quality perovskite films to be formed but the device efficiencies still tend to lag behind those fabricated using spin-coated perovskite layers. Herein we report the use of three 2,3,4,5,6-pentafluorophenylethylammonium halides (FEAX, where X = I, Br or Cl) as additives in nitrogen knife-assisted blade-coated methylammonium lead iodide (MAPbI) perovskite solar cells.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Inorganic and Organic Chemistry, University Jaume I, Av. Vicent Sos Baynat s/n, 12071 Castellón de la Plana, Spain.
In this work, a series of BaMnCuO samples (x: 1, 0.9, 0.8, and 0.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea.
Integrating functional materials with photonic and optoelectronic technologies has revolutionized medical diagnostics, enhancing imaging and sensing capabilities. This review provides a comprehensive overview of recent innovations in functional materials, such as quantum dots, perovskites, plasmonic nanomaterials, and organic semiconductors, which have been instrumental in the development of diagnostic devices characterized by high sensitivity, specificity, and resolution. Their unique optical properties enable real-time monitoring of biological processes, advancing early disease detection and personalized treatment.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!