The Coronavirus Disease 2019(COVID-19) has caused widespread and significant harm globally. In order to address the urgent demand for a rapid and reliable diagnostic approach to mitigate transmission, the application of deep learning stands as a viable solution. The impracticality of many existing models is attributed to excessively large parameters, significantly limiting their utility. Additionally, the classification accuracy of the model with few parameters falls short of desirable levels. Motivated by this observation, the present study employs the lightweight network MobileNetV3 as the underlying architecture. This paper incorporates the dense block to capture intricate spatial information in images, as well as the transition layer designed to reduce the size and channel number of the feature map. Furthermore, this paper employs label smoothing loss to address the inter-class similarity effects and uses class weighting to tackle the problem of data imbalance. Additionally, this study applies the pruning technique to eliminate unnecessary structures and further reduce the number of parameters. As a result, this improved model achieves an impressive 98.71% accuracy on an openly accessible database, while utilizing only 5.94 million parameters. Compared to the previous method, this maximum improvement reaches 5.41%. Moreover, this research successfully reduces the parameter count by up to 24 times, showcasing the efficacy of our approach. This demonstrates the significant benefits in regions with limited availability of medical resources.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11185471 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0303049 | PLOS |
Sci Rep
January 2025
School of Information and Communication Engineering, North University of China, Taiyuan, 030051, China.
The Insulated Gate Bipolar Transistor (IGBT) is a crucial power semiconductor device, and the integrity of its internal structure directly influences both its electrical performance and long-term reliability. However, the precise semantic segmentation of IGBT ultrasonic tomographic images poses several challenges, primarily due to high-density noise interference and visual distortion caused by target warping. To address these challenges, this paper constructs a dedicated IGBT ultrasonic tomography (IUT) dataset using Scanning Acoustic Microscopy (SAM) and proposes a lightweight Multi-Scale Fusion Network (LMFNet) aimed at improving segmentation accuracy and processing efficiency in ultrasonic images analysis.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
January 2025
The School of Computer Science, Hangzhou Dianzi University, Hangzhou, China.
Convolutional neural networks (CNNs) have been widely utilized for decoding motor imagery (MI) from electroencephalogram (EEG) signals. However, extracting discriminative spatial-temporal-spectral features from low signal-to-noise ratio EEG signals remains challenging. This paper proposes MBMSNet , a multi-branch, multi-scale, and multi-view CNN with a lightweight temporal attention mechanism for EEG-Based MI decoding.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Beihang University, School of Chemistry, chemsitry, No 37 Xueyuan Rd, 100191, Beijing, CHINA.
Achieving multi-spectrum compatible stealth in radar-terahertz-infrared bands with robust performance has great prospects for both military and civilian applications. However, the progress of materials encounters substantial challenges due to the significant variability in frequency coupling properties across different electromagnetic wave bands. Here, this work presents the design of a multi-scale structure and fabricates a lightweight aerogel (silver nanowire@carbon, AgNW@C) consisting of a regular coaxial nano-cable, with silver nanowire as the core and amorphous-graphitized hybrid carbon as the outer-layer.
View Article and Find Full Text PDFCurr Med Imaging
January 2025
Department of Electrical Engineering, Government College University, Lahore, Pakistan.
Background: Colon diseases are major global health issues that often require early detection and correct diagnosis to be effectively treated. Deep learning approaches and recent developments in medical imaging have demonstrated promise in increasing diagnostic accuracy.
Objective: This work suggests that a Convolutional Neural Network (CNN) model paired with other models can detect different gastrointestinal (GI) abnormalities or diseases from endoscopic images via the fusion of residual blocks, including alpha dropouts (αDO) and auxiliary fusing layers.
Curr Med Imaging
January 2025
School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China.
Background: Early and timely detection of pulmonary nodules and initiation treatment can substantially improve the survival rate of lung carcinoma. However, current detection methods based on convolutional neural networks (CNNs) cannot easily detect pulmonary nodules owing to low detection accuracy and the difficulty in detecting small-sized pulmonary nodules; meanwhile, more accurate CNN-based models are slow and require high hardware specifications.
Objective: The aim of this study is to develop a detection model that achieves both high accuracy and real-time performance, ensuring effective and timely results.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!