Learning signed distance functions (SDFs) from point clouds is an important task in 3D computer vision. However, without ground truth signed distances, point normals or clean point clouds, current methods still struggle from learning SDFs from noisy point clouds. To overcome this challenge, we propose to learn SDFs via a noise to noise mapping, which does not require any clean point cloud or ground truth supervision. Our novelty lies in the noise to noise mapping which can infer a highly accurate SDF of a single object or scene from its multiple or even single noisy observations. We achieve this by a novel loss which enables statistical reasoning on point clouds and maintains geometric consistency although point clouds are irregular, unordered and have no point correspondence among noisy observations. To accelerate training, we use multi-resolution hash encodings implemented in CUDA in our framework, which reduces our training time by a factor of ten, achieving convergence within one minute. We further introduce a novel schema to improve multi-view reconstruction by estimating SDFs as a prior. Our evaluations under widely-used benchmarks demonstrate our superiority over the state-of-the-art methods in surface reconstruction from point clouds or multi-view images, point cloud denoising and upsampling.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TPAMI.2024.3416068 | DOI Listing |
Waste Manag
January 2025
ZheJiang University, Department of Mechanical Engineering, ZheJiang, 310000, China.
With the rapid increase in end-of-life smartphones, enhancing the automation and intelligence of their recycling processes has become an urgent challenge. At present, the disassembly of discarded smartphones predominantly relies on manual labor, which is not only inefficient but also associated with environmental pollution and high labor intensity. In the context of end-of-life smartphone recycling, complex situations such as stacking and occlusion are commonly encountered.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Institute of Advanced Chemistry of Catalonia (IQAC), Consejo Superior de Investigaciones Científicas (CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, ISCIII), Jordi Girona, 18-26, 08034 Barcelona, Spain. Electronic address:
Sensors (Basel)
January 2025
Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.
Accurate 6D object pose estimation is critical for autonomous docking. To address the inefficiencies and inaccuracies associated with maximal cliques-based pose estimation methods, we propose a fast 6D pose estimation algorithm that integrates feature space and space compatibility constraints. The algorithm reduces the graph size by employing Laplacian filtering to resample high-frequency signal nodes.
View Article and Find Full Text PDFSensors (Basel)
January 2025
College of Electronics and Information Engineering, South-Central Minzu University, Wuhan 430074, China.
Drones are extensively utilized in both military and social development processes. Eliminating the reliance of drone positioning systems on GNSS and enhancing the accuracy of the positioning systems is of significant research value. This paper presents a novel approach that employs a real-scene 3D model and image point cloud reconstruction technology for the autonomous positioning of drones and attains high positioning accuracy.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Geosciences, Yangtze University, Wuhan 430100, China.
Roadside tree segmentation and parameter extraction play an essential role in completing the virtual simulation of road scenes. Point cloud data of roadside trees collected by LiDAR provide important data support for achieving assisted autonomous driving. Due to the interference from trees and other ground objects in street scenes caused by mobile laser scanning, there may be a small number of missing points in the roadside tree point cloud, which makes it familiar for under-segmentation and over-segmentation phenomena to occur in the roadside tree segmentation process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!