Ensemble Vision Transformer for Dementia Diagnosis.

IEEE J Biomed Health Inform

Published: September 2024

In recent years, deep learning has gained momentum in computer-aided Alzheimer's Disease (AD) diagnosis. This study introduces a novel approach, Monte Carlo Ensemble Vision Transformer (MC-ViT), which develops an ensemble approach with Vision transformer (ViT). Instead of using traditional ensemble methods that deploy multiple learners, our approach employs a single vision transformer learner. By harnessing Monte Carlo sampling, this method produces a broad spectrum of classification decisions, enhancing the MC-ViT performance. This novel technique adeptly overcomes the limitation of 3D patch convolutional neural networks that only characterize partial of the whole brain anatomy, paving the way for a neural network adept at discerning 3D inter-feature correlations. Evaluations using the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset with 7199 scans and Open Access Series of Imaging Studies-3 (OASIS-3) with 1992 scans showcased its performance. With minimal preprocessing, our approach achieved an impressive 90% accuracy in AD classification, surpassing both 2D-slice CNNs and 3D CNNs.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2024.3412812DOI Listing

Publication Analysis

Top Keywords

vision transformer
16
ensemble vision
8
alzheimer's disease
8
monte carlo
8
ensemble
4
transformer
4
transformer dementia
4
dementia diagnosis
4
diagnosis years
4
years deep
4

Similar Publications

Optimizing Transformer-Based Network via Advanced Decoder Design for Medical Image Segmentation.

Biomed Phys Eng Express

January 2025

Shandong University, No. 72, Binhai Road, Jimo, Qingdao City, Shandong Province, Qingdao, 266200, CHINA.

U-Net is widely used in medical image segmentation due to its simple and flexible architecture design. To address the challenges of scale and complexity in medical tasks, several variants of U-Net have been proposed. In particular, methods based on Vision Transformer (ViT), represented by Swin UNETR, have gained widespread attention in recent years.

View Article and Find Full Text PDF

Objective: To design a deep learning-based model for early screening of diabetic retinopathy, predict the condition, and provide interpretable justifications.

Methods: The experiment's model structure is designed based on the Vision Transformer architecture which was initiated in March 2023 and the first version was produced in July 2023 at Affiliated Hospital of Hangzhou Normal University. We use the publicly available EyePACS dataset as input to train the model.

View Article and Find Full Text PDF

Introduction: Artificial intelligence and neuroimaging enable accurate dementia prediction, but 'black box' models can be difficult to trust. Explainable artificial intelligence (XAI) describes techniques to understand model behaviour and the influence of features, however deciding which method is most appropriate is non-trivial. Vision transformers (ViT) have also gained popularity, providing a self-explainable, alternative to traditional convolutional neural networks (CNN).

View Article and Find Full Text PDF

In the field of medical science, skin segmentation has gained significant importance, particularly in dermatology and skin cancer research. This domain demands high precision in distinguishing critical regions (such as lesions or moles) from healthy skin in medical images. With growing technological advancements, deep learning models have emerged as indispensable tools in addressing these challenges.

View Article and Find Full Text PDF

Polysomnography (PSG) is crucial for diagnosing sleep disorders, but manual scoring of PSG is time-consuming and subjective, leading to high variability. While machine-learning models have improved PSG scoring, their clinical use is hindered by the 'black-box' nature. In this study, we present SleepXViT, an automatic sleep staging system using Vision Transformer (ViT) that provides intuitive, consistent explanations by mimicking human 'visual scoring'.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!