Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
With the advancement of sequencing methodologies, the acquisition of vast amounts of multi-omics data presents a significant opportunity for comprehending the intricate biological mechanisms underlying diseases and achieving precise diagnosis and treatment for complex disorders. However, as diverse omics data are integrated, extracting sample-specific features within each omics modality and exploring potential correlations among different modalities while avoiding mutual interference becomes a critical challenge in multi-omics data integration research. In the context of this study, we proposed a framework that unites specificity-aware GATs and cross-modal attention to integrate different omics data (MOSGAT). To be specific, we devise Graph Attention Networks (GATs) tailored for each omics modality data to perform feature extraction on samples. Additionally, an adaptive confidence attention weighting technique is incorporated to enhance the confidence in the extracted features. Finally, a cross-modal attention mechanism was devised based on multi-head self-attention, thoroughly uncovering potential correlations between different omics data. Extensive experiments were conducted on four publicly available medical datasets, highlighting the superiority of the proposed framework when compared to state-of-the-art methodologies, particularly in the realm of classification tasks. The experimental results underscore MOSGAT's effectiveness in extracting features and exploring potential inter-omics associations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2024.3415641 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!