A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

PhraseAug: An Augmented Medical Report Generation Model with Phrasebook. | LitMetric

Medical report generation is a valuable and challenging task, which automatically generates accurate and fluent diagnostic reports for medical images, reducing workload of radiologists and improving efficiency of disease diagnosis. Fine-grained alignment of medical images and reports facilitates the exploration of close correlations between images and texts, which is crucial for cross-modal generation. However, visual and linguistic biases caused by radiologists' writing styles make cross-modal image-text alignment difficult. To alleviate visual-linguistic bias, this paper discretizes medical reports and introduces an intermediate modality, i.e. phrasebook, consisting of key noun phrases. As discretized representation of medical reports, phrasebook contains both disease-related medical terms, and synonymous phrases representing different writing styles which can identify synonymous sentences, thereby promoting fine-grained alignment between images and reports. In this paper, an augmented two-stage medical report generation model with phrasebook (PhraseAug) is developed, which combines medical images, clinical histories and writing styles to generate diagnostic reports. In the first stage, phrasebook is used to extract semantically relevant important features and predict key phrases contained in the report. In the second stage, medical reports are generated according to the predicted key phrases which contain synonymous phrases, promoting our model to adapt to different writing styles and generating diverse medical reports. Experimental results on two public datasets, IU-Xray and MIMIC-CXR, demonstrate that our proposed PhraseAug outperforms state-of-the-art baselines.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TMI.2024.3416190DOI Listing

Publication Analysis

Top Keywords

writing styles
16
medical reports
16
medical report
12
report generation
12
medical images
12
medical
11
generation model
8
model phrasebook
8
reports
8
diagnostic reports
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!