This study introduces a T cell enrichment process, capitalizing on the size differences between activated and unactivated T cells to facilitate the isolation of activated, transducible T cells. By employing multidimensional double spiral (MDDS) inertial sorting, our approach aims to remove unactivated or not fully activated T cells post-activation, consequently enhancing the efficiency of chimeric antigen receptor (CAR) T cell manufacturing. Our findings reveal that incorporating a simple, label-free, and continuous MDDS sorting step yields a purer T cell population, exhibiting significantly enhanced viability and CAR-transducibility (with up to 85% removal of unactivated T cells and approximately 80% recovery of activated T cells); we found approximately 2-fold increase in CAR transduction efficiency for a specific sample, escalating from ∼10% to ∼20%, but this efficiency highly depends on the original T cell sample as MDDS sorting would be more effective for samples possessing a higher proportion of unactivated T cells. This new cell separation process could augment the efficiency, yield, and cost-effectiveness of CAR T cell manufacturing, potentially broadening the accessibility of this transformative therapy and contributing to improved patient outcomes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c01981DOI Listing

Publication Analysis

Top Keywords

activated cells
12
car cell
12
cell manufacturing
12
unactivated cells
12
multidimensional double
8
double spiral
8
spiral mdds
8
mdds inertial
8
mdds sorting
8
cells
7

Similar Publications

Titanium (Ti)-based materials are favored for hard tissue applications, yet their bioinertness limits their success. This study hypothesizes that functionalizing Ti materials with chitosan nano/microspheres and calcitriol (VD) will enhance their bioactivity by improving cellular activities and mineralization. To test this, chitosan particles were applied uniformly onto Ti surfaces using electrophoretic deposition (EPD) at 20 V for 3 minutes.

View Article and Find Full Text PDF

Targeting p38γ synergistically enhances sorafenib-induced cytotoxicity in hepatocellular carcinoma.

Cell Biol Toxicol

January 2025

Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan Province, China.

Sorafenib (Sora) is a first-line treatment for patients with advanced hepatocellular carcinoma (HCC). It can significantly improve the survival rate of patients with advanced HCC, but it is prone to drug resistance during treatment, so the therapeutic effect is extremely limited. Here, we demonstrate that an elevated expression of protein kinase p38γ in hepatocellular carcinoma cells diminishes the tumor cells' sensitivity to Sora.

View Article and Find Full Text PDF

Background: Marathon training and running have many beneficial effects on human health and physical fitness; however, they also pose risks. To date, no comprehensive review regarding both the benefits and risks of marathon running on different organ systems has been published.

Main Body: The aim of this review was to provide a comprehensive review of the benefits and risks of marathon training and racing on different organ systems.

View Article and Find Full Text PDF

The increasing demand for natural alternatives to synthetic fungicides has prompted research into natural products like essential oils for postharvest disease management. This study investigated the antifungal, antioxidant, cytotoxic, and genotoxic potential of essential oil mixtures derived from oregano, rosemary, and mint against Penicillium digitatum, the predominant fungal pathogen causing green mold in orange fruits. P.

View Article and Find Full Text PDF

Background: Multiple sclerosis (MS) is a chronic autoimmune condition that damages the myelin sheath of neurons in the central nervous system, resulting in compromised nerve transmission and motor impairment. The astrocytopathy is considered one of the prominent etiological factor in the pathophysiology of demyelination in MS. The expression level of ceramide synthase-2 (CS-2) is yet to be established in the pathophysiology of astrocytopathy although the derailed ceramide biosynthetic pathways is well demonstrated in the pathophysiology of demyelination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!