Background: To mitigate safety concerns, regulatory agencies must make informed decisions regarding drug usage and adverse drug events (ADEs). The primary pharmacovigilance data stem from spontaneous reports by health care professionals. However, underreporting poses a notable challenge within the current system. Explorations into alternative sources, including electronic patient records and social media, have been undertaken. Nevertheless, social media's potential remains largely untapped in real-world scenarios.
Objective: The challenge faced by regulatory agencies in using social media is primarily attributed to the absence of suitable tools to support decision makers. An effective tool should enable access to information via a graphical user interface, presenting data in a user-friendly manner rather than in their raw form. This interface should offer various visualization options, empowering users to choose representations that best convey the data and facilitate informed decision-making. Thus, this study aims to assess the potential of integrating social media into pharmacovigilance and enhancing decision-making with this novel data source. To achieve this, our objective was to develop and assess a pipeline that processes data from the extraction of web forum posts to the generation of indicators and alerts within a visual and interactive environment. The goal was to create a user-friendly tool that enables regulatory authorities to make better-informed decisions effectively.
Methods: To enhance pharmacovigilance efforts, we have devised a pipeline comprising 4 distinct modules, each independently editable, aimed at efficiently analyzing health-related French web forums. These modules were (1) web forums' posts extraction, (2) web forums' posts annotation, (3) statistics and signal detection algorithm, and (4) a graphical user interface (GUI). We showcase the efficacy of the GUI through an illustrative case study involving the introduction of the new formula of Levothyrox in France. This event led to a surge in reports to the French regulatory authority.
Results: Between January 1, 2017, and February 28, 2021, a total of 2,081,296 posts were extracted from 23 French web forums. These posts contained 437,192 normalized drug-ADE couples, annotated with the Anatomical Therapeutic Chemical (ATC) Classification and Medical Dictionary for Regulatory Activities (MedDRA). The analysis of the Levothyrox new formula revealed a notable pattern. In August 2017, there was a sharp increase in posts related to this medication on social media platforms, which coincided with a substantial uptick in reports submitted by patients to the national regulatory authority during the same period.
Conclusions: We demonstrated that conducting quantitative analysis using the GUI is straightforward and requires no coding. The results aligned with prior research and also offered potential insights into drug-related matters. Our hypothesis received partial confirmation because the final users were not involved in the evaluation process. Further studies, concentrating on ergonomics and the impact on professionals within regulatory agencies, are imperative for future research endeavors. We emphasized the versatility of our approach and the seamless interoperability between different modules over the performance of individual modules. Specifically, the annotation module was integrated early in the development process and could undergo substantial enhancement by leveraging contemporary techniques rooted in the Transformers architecture. Our pipeline holds potential applications in health surveillance by regulatory agencies or pharmaceutical companies, aiding in the identification of safety concerns. Moreover, it could be used by research teams for retrospective analysis of events.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11220433 | PMC |
http://dx.doi.org/10.2196/46176 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!