Glioblastoma patients have a highly immunosuppressive tumor microenvironment and systemic immunosuppression that comprise a major barrier to immune checkpoint therapy. Based on the production of endocannabinoids by glioblastomas, we explored involvement of endocannabinoid receptor 2 (CB2R), encoded by the CNR2 gene, which is predominantly expressed by immune cells, in glioblastoma-related immunosuppression. Bioinformatics of human glioblastoma databases was used to correlate enzymes involved in the synthesis and degradation of endocannabinoids, as well as CB2Rs, with patient overall survival. Intrastriatal administration of luciferase-expressing, murine GL261 glioblastoma cells was used to establish in in vivo glioblastoma model for characterization of tumor growth and intratumoral immune cell infiltration, as well as provide immune cells for in vitro co-culture experiments. Involvement of CB2Rs was determined by treatment with CB2R agonist (GW405833) or CB2R antagonist (AM630). ELISA, FACS, and immunocytochemistry were used to determine perforin, granzyme B, and surface marker levels. Bioinformatics of human glioblastoma databases showed high expression of CB2R and elevated endocannabinoid production correlated with poorer prognosis, and involved immune-associated pathways. AM630treatment of GL261 glioblastoma-bearing mice induced a potent antitumor response, with survival plateauing at 50% on Day 40, when all control mice (median survival 28 days) and mice treated with GW405833 (median survival 21 days) had died. Luciferase tumor imaging revealed accelerated tumor growth by GW405833 treatment, but stable or regressing tumors in AM630-treated mice. Notably, in spleens, AM630 treatment caused an 83% decrease in monocytes/macrophages, and 1.8- and 1.6-fold increases in CD8+ and CD4+ cells, respectively. Within tumors, there was a corresponding decrease in tumor-associated macrophages (TAMs) and increase in CD8+ T cells. In vitro, lymphocytes from AM630-treated mice showed greater cytotoxic function (increased percentage of perforin- and granzyme B-positive CD8+ T cells). These results suggest that inhibition of CB2R enhances both immunosuppressive TAM infiltration and systemic T-cell suppression through CB2R activation, and that inhibition of CB2Rs can potently counter both the immunosuppressive tumor microenvironment, as well as systemic immunosuppression in glioblastoma.

Download full-text PDF

Source
http://dx.doi.org/10.1089/can.2024.0063DOI Listing

Publication Analysis

Top Keywords

endocannabinoid receptor
8
potent antitumor
8
antitumor response
8
immunosuppressive tumor
8
tumor microenvironment
8
systemic immunosuppression
8
immune cells
8
bioinformatics human
8
human glioblastoma
8
glioblastoma databases
8

Similar Publications

Sickle cell anemia (SCA) is a monogenic blood disease with complex and multifactorial pathophysiology. The endocannabinoid system (ECS) could be a candidate for modulating SCA complications, such as priapism, as it has demonstrated an essential role in hematopoiesis, platelet aggregation, and immune responses. We evaluated the association of ECS-related single nucleotide polymorphisms (SNP) (FAAH rs324420, MAGL rs604300, CNR1 rs7766029, and CNR2 rs35761398) with priapism in a Brazilian SCA cohort.

View Article and Find Full Text PDF

FcεRI/PLC axis promotes anandamide synthesis and the formation of CB2-GPR55 heteromers, modulating cytokine production in mast cells.

Int Immunopharmacol

December 2024

Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico; Centro de Investigación sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico. Electronic address:

Mast cells (MC) are crucial effectors in immediate allergic reactions. Monomeric IgE sensitizes MC and triggers various signaling responses. FcεRI/IgE/antigen crosslinking induces the release of several mediators, including bioactive lipids, but little is known about endocannabinoids (eCBs) secretion.

View Article and Find Full Text PDF

The cannabinoid receptor 1 (CB1) is an essential component of the endocannabinoid system, responsible for regulating various physiological processes such as pain, mood, and appetite. Despite increasing interest in the therapeutic potential of CB1 modulators, the precise mechanisms by which small molecules modulate receptor activity-particularly without fully transitioning between active and inactive states-remain partially understood. In this study, the complexity of CB1-ligand interactions was evaluated for the inactive CB1 state.

View Article and Find Full Text PDF

Electroacupuncture ameliorates inflammatory pain through CB2 receptor-dependent activation of the AMPK signaling pathway.

Chin Med

December 2024

Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Diseases of Hubei Province and National Education Ministry, Huazhong University of Science and Technology, Wuhan, 430030, China.

Background: Chronic inflammatory pain is a pervasive condition, and electroacupuncture (EA) is an effective treatment, but its mechanisms are not fully understood. AMP-activated protein kinase (AMPK), a key energy sensor, is involved in pain relief and EA's effects. EA may work by increasing endocannabinoids, upregulating CB2 receptors (CB2R), and stimulating β-endorphin (β-END).

View Article and Find Full Text PDF

Introduction: Osteoarthritis (OA) is a chronic degenerative joint disease characterized by the progressive degradation of articular cartilage, resulting in pain and reduced mobility. Turmeric ( L.) has been widely recognized for its anti-inflammatory and antioxidant properties, but the molecular mechanisms underlying its therapeutic effects remain inadequately explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!