The study was aimed to formulate and evaluate apremilast-loaded zinc oxide-mesoporous silica nanoparticles for treatment of psoriasis. Mesoporous silica nanoparticles were prepared by using sol-gel method and evaluated for particle size, drug release, cytotoxicity study and pharmacodynamic study. The synthesized mesoporous silica nanoparticles showed particle size of 319.9 ± 3.9 nm, with 24 ± 0.217% of loading capacity. cytotoxicity study on A-431 cell line showed increased anti-psoriatic activity of apremilast-loaded zinc oxide-mesoporous silica nanoparticles. pharmacodynamic study and histological studies showed improved efficacy of drug in imiquimod-induced psoriasis mice model. The apremilast-loaded zinc oxide-mesoporous silica nanoparticles showed improved therapeutic efficacy, suggesting that they are promising approach for topical treatment of psoriasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285223 | PMC |
http://dx.doi.org/10.1080/20415990.2024.2343646 | DOI Listing |
Pharmaceutics
January 2025
Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba 305-8573, Ibaraki, Japan.
Orally administered sorafenib has shown limited improvement in overall survival for non-small-cell lung cancer patients, likely due to poor pharmacokinetics and adverse effects, including gastrointestinal toxicity. To address these issues, we developed silica-containing antioxidant nanoparticles (siRNP) as a carrier to enhance the therapeutic efficacy of lipophilic sorafenib. Sorafenib was loaded into siRNP via dialysis (sora@siRNP).
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Jožef Stefan Institute, Department of Physical and Organic Chemistry, Jamova c. 39, SI-1000 Ljubljana, Slovenia.
The study aimed to develop a superhydrophobic coating on the aluminium alloy 2024-T3 surface. The desired surface roughness and low surface energy were achieved with SiO nanoparticles, synthesised via the Stöber method and modified with alkyl silane (AS) or perfluoroalkyl silane (FAS). To enhance particle adhesion to the alloy substrate, nanoparticles were incorporated into a hybrid sol-gel coating composed of tetraethyl orthosilicate, methyl methacrylate, and 3-methacryloxypropyl trimethoxysilane.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2025
State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
In most studies, the penetration of nanoparticles into tumors was mainly dependent on the enhanced permeability and retention (ERP) effect. However, the penetration of nanoparticles would be limited by tumor-dense structure, immune system, and other factors. To solve these problems, macrophages with active tropism to tumor tissues, loaded nanoparticles with photothermal therapy, and chemotherapy were designed.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Faculty of Chemical Engineering, Kunming University of Science and Technology, Yunnan 650500, China; Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Yunnan International Joint Laboratory of Sustainable Polymers, Yunnan 650500, China; Engineering Research Center of Biodegradable Polymers, Educational Commission of Yunnan Province, Kunming, Yunnan 650500, China. Electronic address:
The development of natural rubber (NR) gloves with superior antibacterial and enhanced mechanical properties is critical for safeguarding healthcare personnel. In this study, Ti-based MXene (TiCT) nanosheets were employed for the first time as an antibacterial agent to improve the antimicrobial performance of NR. Through SiO₂ intercalation via electronic assembly, the antibacterial efficacy of MXene was significantly boosted, achieving 100 % lethality against E.
View Article and Find Full Text PDFToxics
January 2025
Department of Chemical Engineering, Faculty of Sciences, University of Granada, Campus Fuente Nueva s/n, 18071 Granada, Spain.
Surfactants play a crucial role in various industrial applications, including detergents and personal care products. However, their widespread use raises concerns due to their potential environmental impact and health risks, particularly in aquatic ecosystems, where they can disrupt the balance of marine life and accumulate in water sources, posing challenges to sustainable development. This study investigates the environmental and health implications of anionic and nonionic surfactants, focusing on their toxicity, biodegradation, and skin irritation potential profiles, especially when combined with silica nanoparticles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!