Nanobody-Engineered Biohybrid Bacteria Targeting Gastrointestinal Cancers Induce Robust STING-Mediated Anti-Tumor Immunity.

Adv Sci (Weinh)

Department of Geriatrics and Shenzhen Clinical Research Centre for Geriatrics, Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology, The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, 518020, China.

Published: August 2024

Bacteria can be utilized for cancer therapy owing to their preferential colonization at tumor sites. However, unmodified non-pathogenic bacteria carry potential risks due to their non-specific targeting effects, and their anti-tumor activity is limited when used as monotherapy. In this study, a biohybrid-engineered bacterial system comprising non-pathogenic MG1655 bacteria modified with CDH17 nanobodies on their surface and conjugated with photosensitizer croconium (CR) molecules is developed. The resultant biohybrid bacteria can efficiently home to CDH17-positive tumors, including gastric, pancreatic, and colorectal cancers, and significantly suppress tumor growth upon irradiation. More importantly, biohybrid bacteria-mediated photothermal therapy (PTT) induced abundant macrophage infiltration in a syngeneic murine colorectal model. Further, that the STING pathway is activated in tumor macrophages by the released bacterial nucleic acid after PTT is revealed, leading to the production of type I interferons. The addition of CD47 nanobody but not PD-1 antibody to the PTT regimen can eradicate the tumors and extend survival. This results indicate that bacteria endowed with tumor-specific selectivity and coupled with photothermal payloads can serve as an innovative strategy for low-immunogenicity cancers. This strategy can potentially reprogram the tumor microenvironment by inducing macrophage infiltration and enhancing the efficacy of immunotherapy targeting macrophages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11336900PMC
http://dx.doi.org/10.1002/advs.202401905DOI Listing

Publication Analysis

Top Keywords

biohybrid bacteria
8
macrophage infiltration
8
bacteria
6
nanobody-engineered biohybrid
4
bacteria targeting
4
targeting gastrointestinal
4
gastrointestinal cancers
4
cancers induce
4
induce robust
4
robust sting-mediated
4

Similar Publications

Hyperglycemia-responsive nitric oxide-releasing biohybrid cryogels with cascade enzyme catalysis for enhanced healing of infected diabetic wounds.

J Control Release

December 2024

Joint Research Center of Medicine, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, Zhejiang 315700, China; Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China; Department of Periodontics, School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China. Electronic address:

Diabetic wound infections are a frequent complication for diabetic patients, and conventional treatment for combating diabetic wound infections relies on antibiotics. However, the misuse and overuse of antibiotics have led to the emergence of drug-resistant bacteria, making these infections challenging to treat. Thus, there is an urgent need for alternative strategies to effectively manage diabetic wound infections.

View Article and Find Full Text PDF

L. monocytogenes is a Gram-positive bacterial pathogen, known to cause food poisoning and systemic disease, specifically listeriosis. This species has shown resistance to many commonly used antibiotics, making the search for new alternative therapies is a pressing matter.

View Article and Find Full Text PDF

Bacteria-based biohybrids for remodeling adenosine-mediated immunosuppression to boost radiotherapy-triggered antitumor immune response.

Biomaterials

May 2025

State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China. Electronic address:

Radiotherapy (RT) can trigger immunogenic cell death (ICD) in tumor cells and release adenosine triphosphate (ATP) to activate antitumor immunity. However, the formation of immunosuppressive adenosine (ADO) mediated by ectonucleotidases including CD39 and CD73, can exacerbate the immunosuppressive effects. Herein, a radiosensitizer-based metal-organic framework (MOF) composed of bismuth (Bi) and ellagic acid (EA) was synthesized in situ on the surface of Escherichia coli Nissle 1917 (EcN) to serve as a carrier for the CD39 inhibitor sodium polyoxotungstate (POM-1).

View Article and Find Full Text PDF
Article Synopsis
  • Current environmental issues and energy crises necessitate a switch in our energy sources.
  • The study presents a biohybrid system that merges light-activated quantum dots with engineered bacteria to boost renewable butanol production.
  • The results show that this system not only enhances butanol production but also efficiently utilizes solar energy and biomass, achieving notable increases in key metabolic ratios.
View Article and Find Full Text PDF

Applied photosynthesis: An idea whose time has come.

Biochim Biophys Acta Bioenerg

January 2025

Controlled Photobiosynthesis Laboratory, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia; Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul, Turkey. Electronic address:

Advancements in materials science, synthetic biology, and nanomaterial engineering are revolutionizing renewable energy technologies, creating new pathways for sustainable energy production. Biohybrid devices-systems combining biological components with engineered synthetic materials-are emerging as powerful platforms for harnessing solar energy to drive hydrogen production, photovoltaics, catalysis, and biosensing. This collection of articles presents leading-edge research in biohybrid energy systems, where photosynthetic mechanisms are redeployed to develop eco-friendly, high-efficiency alternatives to conventional solar technologies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!