Background: Immune cell signatures have been implicated in cancer progression and response to treatment. However, the causal relationship between immune cell signatures and prostate cancer (PCa) is still unclear. This study aimed to investigate the potential causal associations between immune cell signatures and PCa using Mendelian randomization (MR).
Method: This study utilized genome-wide association studies (GWAS) summary statistics for PCa and immune cell signatures from publicly available datasets. MR analyses, including IVW, MR-Egger, and weighted median methods, were performed to evaluate the causal associations between immune cell signatures and PCa. Multiple sensitivity analysis methods have been adopted to test the robustness of our results.
Results: After FDR correction, our findings suggested that specific immune cell signatures, such as HLA DR on CD33+ HLA DR+ CD14dim (odds ratio [OR] = 1.47, 95% confidence interval [CI] = 1.12-1.92, p = 0.006), HLA DR on CD33+ HLA DR+ CD14- (OR = 1.32, 95% CI = 1.05-1.67, p = 0.018), and HLA DR on monocyte (OR = 1.23, 95% CI = 1.03-1.47, p = 0.021), were significantly associated with PCa. PCa had no statistically significant effect on immunophenotypes. These results remained robust in sensitivity analyses, supporting the validity of the causal associations.
Conclusions: This study provides evidence of a potential causal relationship between certain immune cell signatures and PCa. We observed that immune cell signatures involving HLA DR expression on specific cell types are associated with an increased risk of PCa.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11236311 | PMC |
http://dx.doi.org/10.18632/aging.205942 | DOI Listing |
J Reprod Immunol
January 2025
Department of Chinese Medicine Rehabilitation, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang 50001, China. Electronic address:
Clinical evidence increasingly suggests that traditional treatments for dysfunctional uterine bleeding (DUB) have limited success. In this study, blood samples from 10 DUB patients and 10 healthy controls were collected for transcriptome sequencing. Then, the differentially expressed genes (DEGs) were screened and crossed with the DUB-related module genes to obtain the target genes.
View Article and Find Full Text PDFLab Anim
January 2025
Department of Physiology, Faculty of Medicine, University of Colombo, Sri Lanka.
The immunogenicity of rabies vaccines is commonly measured by serological testing, which includes measuring rabies virus-neutralising antibody titre levels in the serum. Apart from humoral immunity, cellular immunity measurements are also helpful in assessing the immunogenicity and efficacy of rabies vaccinations. Recently, there has been an increased emphasis on cellular immunity measurements against rabies in humans and animals.
View Article and Find Full Text PDFVirol J
January 2025
Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, People's Republic of China.
Monkeypox virus (MPXV) is an important zoonotic pathogenic virus, which poses serious threats to public health. MPXV infection can be prevented by immunization against the variola virus. Because of the safety risks and side effects of vaccination with live vaccinia virus (VACV) strain Tian Tan (VTT), we constructed two gene-deleted VTT recombinants (TTVAC7 and TTVC5).
View Article and Find Full Text PDFJ Ovarian Res
January 2025
Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, #128 Shenyang Road, Shanghai, 200090, People's Republic of China.
Background: Ovarian cancers (OC) and cervical cancers (CC) have poor survival rates. Tumor-infiltrating lymphocytes (TILs) play a pivotal role in prognosis, but shared immune mechanisms remain elusive.
Methods: We integrated single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) to explore immune regulation in OC and CC, focusing on the PI3K/AKT pathway and FLT3 as key modulators.
BMC Genomics
January 2025
College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!