A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Highly Accurate and Explainable Predictions of Small-Molecule Antioxidants for Eight In Vitro Assays Simultaneously through an Alternating Multitask Learning Strategy. | LitMetric

Highly Accurate and Explainable Predictions of Small-Molecule Antioxidants for Eight In Vitro Assays Simultaneously through an Alternating Multitask Learning Strategy.

J Chem Inf Model

Joint International Research Laboratory of Synthetic Biology and Medicine, Ministry of Education, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.

Published: December 2024

Small molecule antioxidants can inhibit or retard oxidation reactions and protect against free radical damage to cells, thus playing a key role in food, cosmetics, pharmaceuticals, the environment, as well as materials. Experimentally driven antioxidant discovery is a major paradigm, and computationally assisted antioxidants are rarely reported. In this study, a functional-group-based alternating multitask self-supervised molecular representation learning method is proposed to simultaneously predict the antioxidant activities of small molecules for eight commonly used in vitro antioxidant assays. Extensive evaluation results reveal that compared with the baseline models, the multitask FG-BERT model achieves the best overall predictive performance, with the highest average F1, BA, ROC-AUC, and PRC-AUC values of 0.860, 0.880, 0.954, and 0.937 for the test sets, respectively. The Y-scrambling testing results further demonstrate that such a deep learning model was not constructed by accident and that it has reliable predictive capabilities. Additionally, the excellent interpretability of the multitask FG-BERT model makes it easy to identify key structural fragments/groups that contribute significantly to the antioxidant effect of a given molecule. Finally, an online antioxidant activity prediction platform called AOP (freely available at https://aop.idruglab.cn/) and its local version were developed based on the high-quality multitask FG-BERT model for experts and nonexperts in the field. We anticipate that it will contribute to the discovery of novel small-molecule antioxidants.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.4c00748DOI Listing

Publication Analysis

Top Keywords

multitask fg-bert
12
fg-bert model
12
small-molecule antioxidants
8
alternating multitask
8
multitask
5
antioxidant
5
highly accurate
4
accurate explainable
4
explainable predictions
4
predictions small-molecule
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!