Fertility is declining worldwide and many couples are turning towards assisted reproductive technologies (ART) to conceive babies. Organisms that propagate via sexual reproduction often come from the fusion between two gametes, an oocyte and a sperm, whose qualities seem to be decreasing in the human species. Interestingly, while the sperm mostly transmits its haploid genome, the oocyte transmits not only its haploid set of chromosomes but also its huge cytoplasm to its progeny. This is what can be defined as the maternal inheritance composed of chromosomes, organelles, lipids, metabolites, proteins and RNAs. To decipher the decline in oocyte quality, it is essential to explore the nature of the maternal inheritance, and therefore study the last stages of murine oogenesis, namely the end of oocyte growth followed by the two meiotic divisions. These divisions are extremely asymmetric in terms of the size of the daughter cells, allowing to preserve the maternal inheritance accumulated during oocyte growth within these huge cells to support early embryo development. Studies performed in Marie-Hélène Verlhac's lab have allowed to discover the unprecedented impact of original acto-myosin based mechanisms in the constitution as well as the preservation of this maternal inheritance and the consequences when these processes go awry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5802/crbiol.155 | DOI Listing |
Neurol Int
January 2025
Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy.
Background/objectives: ZNF711(Zinc finger protein 711) encodes a zinc finger protein of currently undefined function, located on the X chromosome. Current knowledge includes a limited number of case reports where this gene has been exclusively associated with X-linked intellectual disability (XLID). As far as we are aware, we report the first cases of epilepsy associated with this particular variant.
View Article and Find Full Text PDFMaize ( L.) production in sub-Saharan Africa can be improved by using hybrids with genetic resistance to maize lethal necrosis (MLN). This study aimed to assess the general (GCA) and specific combining ability (SCA), reciprocal effects, and quantitative genetic basis of MLN resistance and agronomic traits in tropical maize inbred lines.
View Article and Find Full Text PDFGenome Biol Evol
January 2025
Department of Molecular and Cell Biology, University of California-Merced, Merced, CA 95343.
Eukaryotic genome size varies considerably, even among closely related species. The causes of this variation are unclear, but weak selection against supposedly costly "extra" genomic sequences has been central to the debate for over 50 years. The mutational hazard hypothesis, which focuses on the increased mutation rate to null alleles in superfluous sequences, is particularly influential, though challenging to test.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Horticulture, Agricultural Faculty, Kahramanmaras Sutcu Imam University, Kahramanmaras, 46040, Türkiye.
Background: Walnut (Juglans regia L.) breeding programs aim to develop new genotypes that exhibit superior agronomic traits, including high yield, improved nut quality, and favorable phenological traits. One of the primary methods used in these programs is hybridization, which involves controlled crosses between selected parent varieties.
View Article and Find Full Text PDFGenes Cells
January 2025
Advanced Biological Information Research Division, INAMORI Frontier Research Center, Kyushu University, Fukuoka, Japan.
Preimplantation embryonic development is orchestrated by dynamic changes in the proteome and transcriptome, regulated by mechanisms such as maternal-to-zygotic transition. Here, we employed label-free quantitative proteomics to comprehensively analyze proteome dynamics from germinal vesicle oocytes to blastocysts in mouse embryos. We identified 3490 proteins, including 715 consistently detected across all stages, revealing stage-specific changes in proteins associated with translation, protein modification, and mitochondrial metabolism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!