The versatile basic structure of piperazine allows for the development and production of newer bioactive molecules that can be used to treat a wide range of diseases. Piperazine derivatives are unique and can easily be modified for the desired pharmacological activity. The two opposing nitrogen atoms in a six-membered piperazine ring offer a large polar surface area, relative structural rigidity, and more acceptors and donors of hydrogen bonds. These properties frequently result in greater water solubility, oral bioavailability, and ADME characteristics, as well as improved target affinity and specificity. Various synthetic protocols have been reported for piperazine and its derivatives. In this review, we focused on recently published synthetic protocols for the synthesis of the piperazine and its derivatives. The structure-activity relationship concerning different biological activities of various piperazine-containing drugs has also been highlighted to provide a good understanding to researchers for future research on piperazines.

Download full-text PDF

Source
http://dx.doi.org/10.1111/cbdd.14537DOI Listing

Publication Analysis

Top Keywords

piperazine derivatives
12
synthetic protocols
8
piperazine
5
medicinal chemistry
4
chemistry piperazines
4
piperazines review
4
review versatile
4
versatile basic
4
basic structure
4
structure piperazine
4

Similar Publications

The human gut microbiota (HGM) is a complex ecosystem subtly dependent on the interplay between hundreds of bacterial species and numerous metabolites. Dietary phenols, whether ingested (e.g.

View Article and Find Full Text PDF

Repurposing of phosphodiesterase-5 inhibitor sildenafil as a therapeutic agent to prevent gastric cancer growth through suppressing c-MYC stability for IL-6 transcription.

Commun Biol

January 2025

Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, Southern Medical University, Guangzhou, China.

Phosphodiesterase-5 (PDE5) inhibitors have shown promise as anti-cancer agents in malignancies. However, their specific effects on gastric cancer (GC) and the underlying mechanisms remain elusive. Our aim was to investigate this by combining evidence from population-based studies with data obtained from in vivo and in vitro experiments.

View Article and Find Full Text PDF

Basic pharmacological evaluation of modified phenyl carbamic acid derivatives on cardiovascular functions under in vitro conditions in rats.

Gen Physiol Biophys

January 2025

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Bratislava, Slovakia.

The study aimed to evaluate the basic pharmacological effects of modified phenyl carbamic acid derivates with a basic part made of N-phenylpiperazine (compounds 6a, 6b, 6c, 6d) in Wistar rats. The compounds were evaluated for their ability to decrease the phenylephrine-induced contraction of the aortic strips of rats after repeated administration of the compounds and their ability to inhibit the positive chronotropic effect of isoproterenol on spontaneously beating rat atria. The ability to inhibit the vasoconstriction effect of phenylephrine was confirmed in all compounds in the range from 10.

View Article and Find Full Text PDF

Background: The challenges associated with traditional drug screening, such as high costs and long screening times, have led to an increase in the use of single-cell isolation technologies. Small sample volumes are required for high-throughput, cell-based assays to reduce assay costs and enable rapid sample processing. Using microfluidic chips, single-cell analysis can be conducted more effectively, requiring fewer reagents and maintaining biocompatibility.

View Article and Find Full Text PDF

Diabetes mellitus, particularly type 2 diabetes, is a growing global health challenge characterized by chronic hyperglycemia due to insulin resistance. One therapeutic approach to managing this condition is the inhibition of α-glucosidase, an enzyme involved in carbohydrate digestion, to reduce postprandial blood glucose levels. In this study, a series of thiosemicarbazide-linked quinoline-piperazine derivatives were synthesized and evaluated for their α-glucosidase inhibitory activity, to identify new agents for type 2 diabetes management.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!