Oxidative stress (OS) causes biochemical and morphological alterations in erythrocytes. The primary factors contributing to OS are aging and storage. Antioxidants significantly alleviate OS. Therefore, this study aimed to investigate the response of young and old erythrocytes to vitamin C and vitamin E during storage. Erythrocytes were separated into young and old by the Percoll method. Each erythrocyte subpopulation was categorized into the i) Control (additive solution-7 [AS-7]) and ii) vitamin C and vitamin E in AS-7 (VC+VE) groups and stored for 21 days at 4°C. OS, antioxidant, and aging markers were analyzed on days 1, 14, and 21. The activity of antioxidant enzymes was similar throughout storage in young cells. However, superoxide dismutase activity elevated in old cells (Control and VC+VE) on days 1 and 21. Catalase (CAT) activity increased on days 14 and 21, whereas glutathione peroxidase (GPX) increased on days 1 and 14 in old Controls. However, in old VC+VE, CAT increased on day 21 and GPX increased on day 1. Advanced oxidation protein products, superoxides, glutathione, and uric acid increased in old cells throughout storage. Malondialdehyde decreased in old VC+VE compared with old Control on days 14 and 21. Sialic acids and glutamate oxaloacetate transaminase activity were higher in young cells compared to old cells. Young cells exhibited lower oxidative changes throughout storage. Vitamin C and vitamin E were effective in maintaining the redox balance in old cells. These findings emphasize the need for specific approaches for different subpopulations during erythrocyte banking.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/rej.2024.0033 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!