Adsorption of heavy metals on stream sediments has important implications for the fate and transport of contaminants in subsurface ecosystems. Lead (Pb) is a potentially hazardous heavy metal that is found in high amounts in anthropogenic environments, especially aquatic ecosystems. The key mechanisms for distributing this metal in the environment are adsorption and desorption in stream to sediment, and vice versa. Therefore, this work is mainly focused on the study of the influence of amorphous Fe/Al-oxyhydroxides and soil organic matter (SOM) on the adsorption of Pb onto natural stream sediment. Spiking adsorption experiments were carried out with four types of samples namely, untreated dried sediment, Fe/Al-oxyhydroxides depleted sediment, SOM depleted sediment and both Fe/Al as well as SOM depleted sediment in the pH range of 3.0 to 8.0. The results showed that Pb adsorption was reduced by up to 45% in amorphous Fe/Al-oxyhydroxide depleted sediment at pH 4.0 to 6.0, whereas a similar adsorption reduction was observed in SOM depleted sediment at pH 6.5 to 7.5. Maximum Pb adsorption was reduced by up to 75% in both amorphous Fe/Al-oxyhydroxides and SOM depleted sediment samples at pH ranges ranging from 3.0 to 7.0. Furthermore, it was shown that SOM was most significant at pH 6.5, while Fe/Al-oxyhydroxides were more important when pH was > 6.5 for the Pb adsorption in natural stream sediment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11180037 | PMC |
http://dx.doi.org/10.1007/s40201-024-00894-1 | DOI Listing |
Ecol Evol
January 2025
Tianjin Key Laboratory of Animal and Plant Resistance, Tianjin Key Laboratory of Conservation and Utilization of Animal Diversity, College of Life Science Tianjin Normal University Tianjin China.
Understanding the adaptation of archaea to hypoxia is essential for deciphering the functions and mechanisms of microbes when suffering environmental changes. However, the dynamics and responses of archaea to the sedimentary hypoxia in Bohai Sea are still unclear. In this study, the diversity, composition, and distribution of archaeal community in sediment along an inshore-offshore transect across the oxygen-depleted area in the Bohai Sea were investigated in June, July, and August of 2021 by employing high-throughput sequencing of 16S rRNA gene.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, Republic of Korea.
Long-term intake of high-fluoride water can cause fluorosis in bones and teeth or damage to organs. Fluoride in groundwater is primarily derived from reactions with rocks containing fluorine-related minerals, and fluoride concentrations are elevated in groundwater that has been reacting with these rocks for a long time. The purpose of this study is to investigate the origin and distribution of fluoride in groundwater and to assess the influence of various factors, including geology, on fluoride concentrations in groundwater.
View Article and Find Full Text PDFSci Total Environ
December 2024
Department of Chemistry and Biochemistry, Geotop Research Center, Concordia University, Montréal, QC, Canada.
The priming effect (PE) refers to the enhanced remineralization of recalcitrant organic carbon (OC) driven by the respiration of labile OC, potentially increasing CO fluxes from aquatic ecosystems. Patterns of PE induced by marine and terrestrial OC inputs can be explored through sedimentary contributions to the degraded OC pool. In this study, coastal sediments (δC = -25.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department F.-A. Forel for Environmental and Aquatic Sciences, and Institute for Environmental Sciences, University of Geneva, Geneva, Switzerland. Electronic address:
Methylmercury (MeHg), a neurotoxic pollutant, is formed mainly under anaerobiosis. The "Modulo Sperimentale Elettromeccanico" (MOSE), built to temporarily close the Venice Lagoon and protect the city from flooding, induces changes in the hydrological regime, reducing water circulation and decreasing in the dissolved oxygen concentrations of the lagoon. Our study shows the potential changes in sediment and overlying water physico-chemistry in a simulated MOSE closing-event by incubating sediment cores for 48 h in the laboratory and deploying benthic chambers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!