Efficient 2D membranes play a critical role in water purification and desalination. However, most 2D membranes, such as graphene oxide (GO) membranes, tend to swell or disintegrate in liquid, making precise ionic sieving a tough challenge. Herein, the fabrication of the polyoxometalate clusters (PW) intercalated reduced graphene oxide (rGO) membrane (rGO-PW) is reported through a polyoxometalate-assisted in situ photoreduction strategy. The intercalated PW result in the interlayer spacing in the sub-nanometer scale and induce a nanoconfinement effect to repel the ions in various salt solutions. The permeation rate of rGO-PW membranes are about two orders of magnitude lower than those through the GO membrane. The confinement of nanochannels also generate the excellent non-swelling stability of rGO-PW membranes in aqueous solutions up to 400 h. Moreover, when applied in forward osmosis, the rGO-PW membranes with a thickness of 90 nm not only exhibit a high-water permeance of up to 0.11790 L m h bar and high NaCl rejection (98.3%), but also reveal an ultrahigh water/salt selectivity of 4740. Such significantly improved ion-exclusion ability and high-water flux benefit from the multi-interactions and nanoconfinement effect between PW and rGO nanosheets, which afford a well-interlinked lamellar structure via hydrogen bonding and van der Waals interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422814 | PMC |
http://dx.doi.org/10.1002/advs.202402018 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Mechanical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
The majority of industries throughout the world rely largely on fossil fuels as their primary energy source. However, these resources are finite and become scarcer by the day. Therefore, exploring alternative fuels and additives for diesel fuel is imperative to mitigate fuel consumption.
View Article and Find Full Text PDFSci Rep
January 2025
Renewable Energy Research Group, Isfahan, Iran.
The performance of nanofluids is largely determined by their thermophysical properties. Optimizing these properties can significantly enhance nanofluid performance. This study introduces a hybrid strategy based on computational intelligence to determine the optimal conditions for ternary hybrid nanofluids.
View Article and Find Full Text PDFJ Oral Sci
January 2025
Department of Conservative Dentistry, School of Dentistry and Institute of Oral Bioscience, Jeonbuk National University.
Purpose: This study investigated the synergistic effects of reduced graphene oxide (RGO) on the antibacterial activity of three calcium hydroxide-based intracanal medicaments with different vehicles.
Methods: Multispecies biofilms were cultured in a bovine root canal model. Intracanal medicaments containing nonaqueous vehicles, including N-methyl-2-pyrrolidone (NMP; CleaniCal), propylene glycol (PG; UltraCal XS), and polyethylene glycol (PEG; Calcipex II), were placed in the model.
Int J Biol Macromol
January 2025
Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:
Graphene exhibits exceptional electrical properties, and aerogels made from it demonstrate high sensitivity when used in sensors. However, traditional graphene aerogels have poor biocompatibility and sustainability, posing potential environmental and health risks. Moreover, the stacking of their internal structures results in low compressive strength and fatigue resistance, which limits their further applications.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Lab of Geohazard prevention & Geoenvironment protection, College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China. Electronic address:
Sulfur nanoparticles (SNPs) and their composites are promising for heavy metal adsorption, yet current SNPs often lack surface S, leading to low affinity toward heavy metal and ease of aggregation. Here, we report a simple light-driven method for facile prepare SNPs with surfaces enriched with S and in-situ load them onto graphene oxide (GO) to fabricate GO-S composites. Under illumination, the O generated by photosensitizer phloxine B was able to oxidize S into elemental SNPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!