Transcriptome variations in hybrids of wild emmer wheat (Triticum turgidum ssp. dicoccoides).

BMC Plant Biol

Department of Life Sciences, Ben-Gurion University, Beer-Sheva, 84105, Israel.

Published: June 2024

Background: Wild emmer wheat is a great candidate to revitalize domesticated wheat genetic diversity. Recent years have seen intensive investigation into the evolution and domestication of wild emmer wheat, including whole-genome DNA and transcriptome sequencing. However, the impact of intraspecific hybridization on the transcriptome of wild emmer wheat has been poorly studied. In this study, we assessed changes in methylation patterns and transcriptomic variations in two accessions of wild emmer wheat collected from two marginal populations, Mt. Hermon and Mt. Amasa, and in their stable F4 hybrid.

Results: Methylation-Sensitive Amplified Polymorphism (MSAP) detected significant cytosine demethylation in F4 hybrids vs. parental lines, suggesting potential transcriptome variation. After a detailed analysis, we examined nine RNA-Seq samples, which included three biological replicates from the F4 hybrid and its parental lines. RNA-Seq databases contained approximately 200 million reads, with each library consisting of 15 to 25 million reads. There are a total of 62,490 well-annotated genes in these databases, with 6,602 genes showing differential expression between F4 hybrid and parental lines Mt. Hermon and Mt. Amasa. The differentially expressed genes were classified into four main categories based on their expression patterns. Gene ontology (GO) analysis revealed that differentially expressed genes are associated with DNA/RNA metabolism, photosynthesis, stress response, phosphorylation and developmental processes.

Conclusion: This study highlights the significant transcriptomic changes resulting from intraspecific hybridization within natural plant populations, which might aid the nascent hybrid in adapting to various environmental conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11184805PMC
http://dx.doi.org/10.1186/s12870-024-05258-3DOI Listing

Publication Analysis

Top Keywords

wild emmer
20
emmer wheat
20
parental lines
12
intraspecific hybridization
8
hermon amasa
8
hybrid parental
8
differentially expressed
8
expressed genes
8
wheat
6
wild
5

Similar Publications

A Unique Expression Profile Responding to Powdery Mildew in Wild Emmer Wheat D430.

Int J Mol Sci

December 2024

Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China.

Powdery mildew, caused by f. sp. (), is a disease that seriously harms wheat production and occurs in all wheat-producing areas around the world.

View Article and Find Full Text PDF

Genome-wide identification of m6A-related gene family and the involvement of TdFIP37 in salt stress in wild emmer wheat.

Plant Cell Rep

October 2024

State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy and Yangling Branch of China Wheat Improvement Center, Northwest A&F University, Yangling, 712100, Shaanxi, China.

Article Synopsis
  • Researchers explored the role of m6A-related genes in wild emmer wheat, identifying 64 candidates responsible for RNA modification, including writers, erasers, and readers.
  • The study revealed that gene duplication and polyploidization significantly contributed to the expansion of these genes, with promoter analysis showing links to stress and hormonal response elements.
  • A specific focus on the gene TdFIP37 highlighted its crucial role in regulating salt tolerance, with loss-function mutants demonstrating increased sensitivity to salt stress, linking it to the MAPK signaling pathway.
View Article and Find Full Text PDF

Overexpression of TdNACB improves the drought resistance of rice.

Plant Physiol Biochem

November 2024

State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China. Electronic address:

Article Synopsis
  • * A wild emmer introgression line, BAd7-209, showed greater drought resistance than the drought-resistant wheat variety Zhongmai 175, with transcriptome analysis revealing significant gene expression changes in response to drought.
  • * The study identified TdNACB as a key transcription factor that enhances drought resistance in crops like rice by increasing proline content and boosting enzyme activity related to reactive oxygen species scavenging, providing potential candidate genes for improving wheat drought resistance.
View Article and Find Full Text PDF

The emergence of the Linear Pottery Culture (LBK) during the Neolithic period within Polish territory 5400-4900 BC, introduced plant cultivation, yet the definitive list of cultivated species remains debated. This study examines plant assemblages (fruits, seeds, pollen, and spores) from the LBK settlement in Biskupice, southern Poland, aiming to identify cultivated and wild species used during the development of the first stable settlements in the Carpathian Foothills. Due to extensive sampling, Biskupice yielded over 11,000 macroscopic plant specimens, enabling detailed analysis of plant diversity, distribution, and implications for agrarian and dietary practices.

View Article and Find Full Text PDF

As important secondary metabolites in plants, anthocyanins not only contribute to colored plants organs, but also provide protections against various biotic and abiotic stresses. In this study, a MYB transcription factor gene TdRCA1 from wild emmer wheat regulating anthocyanin biosynthesis in wheat coleoptile was identified on the short arm of chromosome 7A in common wheat genetic background. The TdRCA1 overexpression lines showed colored callus, coleoptile, auricle and stem nodes, as well as up regulation of six anthocyanin-related structural genes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!