Background: Bergeyella porcorum is a newly identified bacterium that has an ambiguous relationship with pneumonia in pigs. However, few studies have adequately characterized this species.
Results: In this study, we analyzed the morphological, physiological, and genomic characteristics of the newly identified B. porcorum sp. nov. strain QD2021 isolated from pigs. The complete genome sequence of the B. porcorum QD2021 strain consists of a single circular chromosome (2,271,736 bp, 38.51% G + C content), which encodes 2,578 genes. One plasmid with a size of 70,040 bp was detected. A total of 121 scattered repeat sequences, 319 tandem repeat sequences, 4 genomic islands, 5 prophages, 3 CRISPR sequences, and 51 ncRNAs were predicted. The coding genes of the B. porcorum genome were successfully annotated across eight databases (NR, GO, KEGG, COG, TCDB, Pfam, Swiss-Prot and CAZy) and four pathogenicity-related databases (PHI, CARD, VFDB and ARDB). In addition, a comparative genome analysis was performed to explore the evolutionary relationships of B. porcorum QD2021.
Conclusions: To our knowledge, this is the first study to provide fundamental phenotypic and whole-genome sequences for B. porcorum. Our results extensively expand the current knowledge and could serve as a valuable genomic resource for future research on B. porcorum.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11181579 | PMC |
http://dx.doi.org/10.1186/s12866-024-03366-6 | DOI Listing |
J Anim Sci Biotechnol
January 2025
Department of Animal Science, University of Arkansas, Fayetteville, AR, USA.
Background: Sow longevity and reproductivity are essential in the modern swine industry. Although many studies have focused on the genetic and genomic factors for selection, little is known about the associations between the microbiome and sows with longevity in reproduction.
Results: In this study, we collected and sequenced rectal and vaginal swabs from 48 sows, nine of which completed up to four parities (U4P group), exhibiting reproductive longevity.
BMC Plant Biol
January 2025
Dazhou Academy of Agricultural Sciences, Dazhou, 635000, China.
Background: Stemona tuberosa, a vital species in traditional Chinese medicine, has been extensively cultivated and utilized within its natural distribution over the past decades. While the chloroplast genome of S. tuberosa has been characterized, its mitochondrial genome (mitogenome) remains unexplored.
View Article and Find Full Text PDFNat Med
January 2025
Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Predicting whether a patient with cancer will benefit from immune checkpoint inhibitors (ICIs) without resorting to advanced genomic or immunologic assays is an important clinical need. To address this, we developed and evaluated SCORPIO, a machine learning system that utilizes routine blood tests (complete blood count and comprehensive metabolic profile) alongside clinical characteristics from 9,745 ICI-treated patients across 21 cancer types. SCORPIO was trained on data from 1,628 patients across 17 cancer types from Memorial Sloan Kettering Cancer Center.
View Article and Find Full Text PDFFEMS Microbiol Lett
January 2025
Department of Innovation Systems Engineering, Graduate School of Engineering, Utsunomiya University, 7-1-2 Yoto, Utsunomiya 321-8585, Japan.
Burkholderia gladioli produces a yellow-pigmented toxin called toxoflavin, and causes disease on a variety of plants. Previous studies have suggested that the pathogenicity of B. gladioli is regulated by an N-acyl-l-homoserine lactone (AHL)-mediated quorum sensing (QS) system.
View Article and Find Full Text PDFGenome Res
January 2025
Biodiversity Research Center, Academia Sinica, Taipei 115, Taiwan;
Groups of orthologous genes are commonly found together on the same chromosome over vast evolutionary distances. This extensive physical gene linkage, known as macrosynteny, is seen between bilaterian phyla as divergent as Chordata, Echinodermata, Mollusca, and Nemertea. Here, we report a unique pattern of genome evolution in Bryozoa, an understudied phylum of colonial invertebrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!